Gjonbalaj Nik O, Campbell David K, Polkovnikov Anatoli
Department of Physics, Boston University, Boston, Massachusetts 02215, USA.
Phys Rev E. 2022 Jul;106(1-1):014131. doi: 10.1103/PhysRevE.106.014131.
Shortcuts to adiabaticity (STAs) have been used to make rapid changes to a system while eliminating or minimizing excitations in the system's state. In quantum systems, these shortcuts allow us to minimize inefficiencies and heating in experiments and quantum computing protocols, but the theory of STAs can also be generalized to classical systems. We focus on one such STA, approximate counterdiabatic (ACD) driving, and numerically compare its performance in two classical systems: a quartic anharmonic oscillator and the β Fermi-Pasta-Ulam-Tsingou lattice. In particular, we modify an existing variational technique to optimize the approximate driving and then develop classical figures of merit to quantify the performance of the driving. We find that relatively simple forms for the ACD driving can dramatically suppress excitations regardless of system size. ACD driving in classical nonlinear oscillators could have many applications, from minimizing heating in bosonic gases to finding optimal local dressing protocols in interacting field theories.
绝热捷径(STAs)已被用于在消除或最小化系统状态中的激发的同时对系统进行快速改变。在量子系统中,这些捷径使我们能够在实验和量子计算协议中最小化低效率和发热,但绝热捷径理论也可以推广到经典系统。我们专注于一种这样的绝热捷径,即近似反绝热(ACD)驱动,并在数值上比较其在两个经典系统中的性能:一个四次非简谐振子和β费米-帕斯塔-乌拉姆-津古晶格。特别是,我们修改了现有的变分技术以优化近似驱动,然后开发经典品质因数来量化驱动的性能。我们发现,无论系统大小如何,相对简单形式的ACD驱动都可以显著抑制激发。经典非线性振荡器中的ACD驱动可能有许多应用,从最小化玻色气体中的发热到在相互作用场论中找到最优的局部修饰协议。