Długosz Maciej, Cichocki Bogdan, Szymczak Piotr
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland.
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland.
Phys Rev E. 2022 Jul;106(1-1):014407. doi: 10.1103/PhysRevE.106.014407.
We developed a computationally efficient approach to approximate near-wall diffusion coefficients of arbitrarily shaped rigid macromolecules. The proposed method relies on extremum principles for Stokes flows produced by the motion of rigid bodies. In the presence of the wall, the rate of energy dissipation is decreased relative to the unbounded fluid. In our approach, the position- and orientation-dependent mobility matrix of a body suspended near a no-slip plane is calculated numerically using a coarse-grained molecular model and the Rotne-Prager-Yamakawa description of hydrodynamics. Effects of the boundary are accounted for via Blake's image construction. The matrix components are scaled using ratios of the corresponding bulk values evaluated for the detailed representation of the molecule and its coarse-grained model, leading to accurate values of the near-wall diffusion coefficients. We assess the performance of the approach for two biomolecules at different levels of coarse-graining.
我们开发了一种计算效率高的方法来近似任意形状刚性大分子的近壁扩散系数。所提出的方法依赖于刚体运动产生的斯托克斯流的极值原理。在有壁面的情况下,相对于无界流体,能量耗散率会降低。在我们的方法中,使用粗粒度分子模型和流体动力学的Rotne-Prager-Yamakawa描述,通过数值计算悬浮在无滑移平面附近物体的位置和方向相关的迁移率矩阵。边界的影响通过布莱克的镜像构造来考虑。使用为分子及其粗粒度模型的详细表示所评估的相应体相值的比率对矩阵分量进行缩放,从而得到近壁扩散系数的准确值。我们在不同粗粒度水平下评估了该方法对两种生物分子的性能。