Spiechowicz Jakub, Marchenko Ivan G, Hänggi Peter, Łuczka Jerzy
Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland.
Kharkiv Institute of Physics and Technology, 61108 Kharkiv, Ukraine.
Entropy (Basel). 2022 Dec 26;25(1):42. doi: 10.3390/e25010042.
The diffusion of small particles is omnipresent in many processes occurring in nature. As such, it is widely studied and exerted in almost all branches of sciences. It constitutes such a broad and often rather complex subject of exploration that we opt here to narrow our survey to the case of the diffusion coefficient for a Brownian particle that can be modeled in the framework of Langevin dynamics. Our main focus centers on the temperature dependence of the diffusion coefficient for several fundamental models of diverse physical systems. Starting out with diffusion in equilibrium for which the Einstein theory holds, we consider a number of physical situations outside of free Brownian motion and end by surveying nonequilibrium diffusion for a time-periodically driven Brownian particle dwelling randomly in a periodic potential. For this latter situation the diffusion coefficient exhibits an intriguingly non-monotonic dependence on temperature.
小颗粒的扩散在自然界中发生的许多过程中无处不在。因此,它在几乎所有科学分支中都得到了广泛的研究和应用。它构成了一个如此广泛且往往相当复杂的探索主题,以至于我们在此选择将研究范围缩小到布朗粒子扩散系数的情况,该系数可以在朗之万动力学框架内进行建模。我们的主要关注点集中在几种不同物理系统的基本模型中扩散系数对温度的依赖性。从爱因斯坦理论适用的平衡态扩散开始,我们考虑自由布朗运动之外的一些物理情形,并以研究一个在周期性势场中随机驻留的、受时间周期驱动的布朗粒子的非平衡扩散作为结束。对于后一种情形,扩散系数对温度呈现出一种有趣的非单调依赖性。