Suppr超能文献

-递归序列的渐近分析。

Asymptotic Analysis of -Recursive Sequences.

作者信息

Heuberger Clemens, Krenn Daniel, Lipnik Gabriel F

机构信息

Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria.

Paris Lodron University of Salzburg, Salzburg, Austria.

出版信息

Algorithmica. 2022;84(9):2480-2532. doi: 10.1007/s00453-022-00950-y. Epub 2022 May 4.

Abstract

For an integer , a -recursive sequence is defined by recurrence relations on subsequences of indices modulo some powers of . In this article, -recursive sequences are studied and the asymptotic behavior of their summatory functions is analyzed. It is shown that every -recursive sequence is -regular in the sense of Allouche and Shallit and that a -linear representation of the sequence can be computed easily by using the coefficients from the recurrence relations. Detailed asymptotic results for -recursive sequences are then obtained based on a general result on the asymptotic analysis of -regular sequences. Three particular sequences are studied in detail: We discuss the asymptotic behavior of the summatory functions ofStern's diatomic sequence,the number of non-zero elements in some generalized Pascal's triangle andthe number of unbordered factors in the Thue-Morse sequence. For the first two sequences, our analysis even leads to precise formulæ without error terms.

摘要

对于整数 ,一个 -递归序列由关于模 的某些幂次的指标子序列的递归关系定义。在本文中,研究了 -递归序列并分析了它们的求和函数的渐近行为。结果表明,每个 -递归序列在阿卢什(Allouche)和沙利特(Shallit)的意义下是 -正则的,并且可以通过使用递归关系中的系数轻松计算该序列的 -线性表示。然后基于关于 -正则序列渐近分析的一个一般结果,得到了 -递归序列的详细渐近结果。详细研究了三个特定序列:我们讨论了斯特恩(Stern)双原子序列的求和函数的渐近行为、一些广义帕斯卡三角形中非零元素的数量以及图厄 - 摩尔斯(Thue-Morse)序列中无边界因子的数量。对于前两个序列,我们的分析甚至得出了没有误差项的精确公式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0328/9374655/589b1e9a7c29/453_2022_950_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验