Lorax Environmental Services, Vancouver, British Columbia, Canada.
Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada.
Environ Toxicol Chem. 2022 Nov;41(11):2859-2869. doi: 10.1002/etc.5465. Epub 2022 Sep 30.
The controls governing the availability of reduced selenium (Se) species, namely selenite (Se[IV]) and dissolved organo-Se (DOSe), to primary producers at the sediment-water interface in depositional environments (i.e., lentic systems) were assessed through consideration of theoretical principles and field data. Selenite is generated in suboxic sediment porewater via the microbially mediated reduction of selenate (Se[IV]) and/or reductive dissolution of Se-bearing iron oxides. Field data for lentic environments demonstrate that the production of DOSe in sediment porewaters can also be redox- and depth-dependent. In this manner, the remobilization depths of Se(IV) and DOSe in depositional environments are dependent on the vertical redox gradient (dEh/dz), where deeper depths of remobilization are observed in less reducing sedimentary environments (lower dEh/dz). In turn, remobilization depth has a direct bearing on the concentration of dissolved Se(IV) and DOSe that may be realized at the sediment-water interface because the depth of reaction governs the diffusive path length, concentration gradient, and rate of diffusional transport toward the sediment-water interface. The principles that link sediment redox gradients, depth of remobilization, diffusive transport processes, and concentration of reduced Se species at the sediment-water interface have a direct bearing on the potential for Se uptake by primary producers in lentic food chains (e.g., phytoplankton, biofilms, bacteria). Overall, these processes complement the current conceptual "benthic detrital food chain" model that describes the accumulation of Se in lentic systems. Environ Toxicol Chem 2022;41:2859-2869. © 2022 SETAC.
在沉积环境(即静水系统)中,控制硒(Se)的可利用形态(即亚硒酸盐(Se[IV])和溶解有机硒(DOSe))在沉积物-水界面向初级生产者供应的因素,是通过考虑理论原理和野外数据来评估的。亚硒酸盐是通过微生物介导的硒酸盐(Se[IV])还原和/或含硒氧化铁的还原溶解在缺氧沉积物孔隙水中生成的。静水环境的野外数据表明,DOSe 在沉积物孔隙水中的产生也与氧化还原和深度有关。通过这种方式,沉积环境中 Se(IV) 和 DOSe 的再移动深度取决于垂直氧化还原梯度(dEh/dz),在还原程度较低的沉积环境(较低的 dEh/dz)中观察到更深的再移动深度。反过来,再移动深度直接影响到可能在沉积物-水界面实现的溶解 Se(IV) 和 DOSe 的浓度,因为反应深度决定了扩散路径长度、浓度梯度和向沉积物-水界面的扩散传输速率。将沉积物氧化还原梯度、再移动深度、扩散传输过程以及沉积物-水界面处还原态 Se 物种的浓度联系起来的原理,直接影响到静水食物链中初级生产者(如浮游植物、生物膜、细菌)对 Se 的吸收潜力。总的来说,这些过程补充了当前描述静水系统中 Se 积累的“底栖碎屑食物链”模型。环境毒理化学 2022;41:2859-2869。©2022SETAC。