Biology Department, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil.
Proc Biol Sci. 2022 Aug 31;289(1981):20221123. doi: 10.1098/rspb.2022.1123. Epub 2022 Aug 17.
Recent long-term studies in protected areas have revealed the loss of biodiversity, yet the ramifications for ecosystem health and resilience remain unknown. Here, we investigate how the loss of understory birds, in the lowest stratum of the forest, affects avian biomass and functional diversity in the Amazon rainforest. Across approximately 30 years in the Biological Dynamics of Forest Fragments Project, we used a historical baseline of avian communities to contrast the avian communities in today's primary forest with those in modern disturbed habitat. We found that in primary rainforest, the reduced abundance of insectivorous species led to reduced functional diversity, but no reduction of biomass, indicating that species with similar functional traits are less likely to coexist in modern primary forests. Because today's forests contain fewer functionally redundant species-those with similar traits-we argue that avian communities in modern primary Amazonian rainforests are less resilient, which may ultimately disrupt the ecosystem in dynamic and unforeseen ways.
最近在保护区进行的长期研究揭示了生物多样性的丧失,但生态系统健康和弹性的后果仍不清楚。在这里,我们调查了森林最底层底层鸟类的丧失如何影响亚马逊热带雨林的鸟类生物量和功能多样性。在“森林碎片生物动力学”项目的大约 30 年中,我们使用鸟类群落的历史基线来对比当今原始森林中的鸟类群落与现代干扰生境中的鸟类群落。我们发现,在原始雨林中,食虫物种数量的减少导致功能多样性降低,但生物量没有减少,这表明具有相似功能特征的物种不太可能在现代原始森林中共存。由于当今的森林中功能冗余的物种(即具有相似特征的物种)较少,我们认为现代原始亚马逊雨林中的鸟类群落的恢复能力较低,这可能最终会以动态和无法预料的方式破坏生态系统。