Suppr超能文献

Vav 通过不同的基于肌动蛋白的过程独立调节突触生长和可塑性。

Vav independently regulates synaptic growth and plasticity through distinct actin-based processes.

机构信息

Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.

Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea.

出版信息

J Cell Biol. 2022 Oct 3;221(10). doi: 10.1083/jcb.202203048. Epub 2022 Aug 17.

Abstract

Modulation of presynaptic actin dynamics is fundamental to synaptic growth and functional plasticity; yet the underlying molecular and cellular mechanisms remain largely unknown. At Drosophila NMJs, the presynaptic Rac1-SCAR pathway mediates BMP-induced receptor macropinocytosis to inhibit BMP growth signaling. Here, we show that the Rho-type GEF Vav acts upstream of Rac1 to inhibit synaptic growth through macropinocytosis. We also present evidence that Vav-Rac1-SCAR signaling has additional roles in tetanus-induced synaptic plasticity. Presynaptic inactivation of Vav signaling pathway components, but not regulators of macropinocytosis, impairs post-tetanic potentiation (PTP) and enhances synaptic depression depending on external Ca2+ concentration. Interfering with the Vav-Rac1-SCAR pathway also impairs mobilization of reserve pool (RP) vesicles required for tetanus-induced synaptic plasticity. Finally, treatment with an F-actin-stabilizing drug completely restores RP mobilization and plasticity defects in Vav mutants. We propose that actin-regulatory Vav-Rac1-SCAR signaling independently regulates structural and functional presynaptic plasticity by driving macropinocytosis and RP mobilization, respectively.

摘要

突触前肌动蛋白动力学的调节对于突触生长和功能可塑性至关重要;然而,其潜在的分子和细胞机制在很大程度上仍不清楚。在果蝇 NMJs 中,突触前 Rac1-SCAR 途径介导 BMP 诱导的受体胞吞作用,以抑制 BMP 生长信号。在这里,我们表明 Rho 型 GEF Vav 作为 Rac1 的上游因子,通过胞吞作用抑制突触生长。我们还提供了证据表明,Vav-Rac1-SCAR 信号通路在破伤风诱导的突触可塑性中具有额外的作用。突触前 Vav 信号通路成分的失活,但不是胞吞作用的调节剂,会损害强直后增强(PTP),并根据外部 Ca2+浓度增强突触抑制。干扰 Vav-Rac1-SCAR 途径也会损害破伤风诱导的突触可塑性所需的储备池 (RP) 囊泡的动员。最后,用肌动蛋白稳定药物处理可完全恢复 Vav 突变体中 RP 的动员和可塑性缺陷。我们提出,肌动蛋白调节的 Vav-Rac1-SCAR 信号通路分别通过驱动胞吞作用和 RP 动员来独立调节结构和功能的突触可塑性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f4a/9388202/f85a8a30fdea/JCB_202203048_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验