Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain.
Unidad Associada al CSIC, Grupo de Bioquímica, Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Zaragoza, Spain.
Mol Ecol. 2022 Oct;31(20):5285-5306. doi: 10.1111/mec.16661. Epub 2022 Aug 26.
Natural populations are characterized by abundant genetic diversity driven by a range of different types of mutation. The tractability of sequencing complete genomes has allowed new insights into the variable composition of genomes, summarized as a species pan-genome. These analyses demonstrate that many genes are absent from the first reference genomes, whose analysis dominated the initial years of the genomic era. Our field now turns towards understanding the functional consequence of these highly variable genomes. Here, we analysed weighted gene coexpression networks from leaf transcriptome data for drought response in the purple false brome Brachypodium distachyon and the differential expression of genes putatively involved in adaptation to this stressor. We specifically asked whether genes with variable "occupancy" in the pan-genome - genes which are either present in all studied genotypes or missing in some genotypes - show different distributions among coexpression modules. Coexpression analysis united genes expressed in drought-stressed plants into nine modules covering 72 hub genes (87 hub isoforms), and genes expressed under controlled water conditions into 13 modules, covering 190 hub genes (251 hub isoforms). We find that low occupancy pan-genes are under-represented among several modules, while other modules are over-enriched for low-occupancy pan-genes. We also provide new insight into the regulation of drought response in B. distachyon, specifically identifying one module with an apparent role in primary metabolism that is strongly responsive to drought. Our work shows the power of integrating pan-genomic analysis with transcriptomic data using factorial experiments to understand the functional genomics of environmental response.
自然种群的特点是存在丰富的遗传多样性,这种多样性是由多种不同类型的突变驱动的。测序完整基因组的可行性使得人们对基因组的可变组成有了新的认识,这些变异性被概括为物种泛基因组。这些分析表明,许多基因不存在于最初的参考基因组中,而这些参考基因组的分析主导了基因组时代的最初几年。我们现在的研究领域转向了理解这些高度可变基因组的功能后果。在这里,我们分析了紫色假雀麦(Brachypodium distachyon)叶片转录组数据中对干旱响应的加权基因共表达网络,以及推测参与适应这种胁迫的基因的差异表达。我们特别询问了在泛基因组中具有可变“占有率”的基因(即在所有研究的基因型中存在或在某些基因型中缺失的基因)是否在共表达模块中具有不同的分布。共表达分析将干旱胁迫下表达的基因联合成 9 个模块,覆盖了 72 个枢纽基因(87 个枢纽同工型),以及在受控水分条件下表达的基因联合成 13 个模块,覆盖了 190 个枢纽基因(251 个枢纽同工型)。我们发现,在几个模块中,低占有率的泛基因数量较少,而其他模块中低占有率的泛基因则较多。我们还为理解 B. distachyon 对干旱的响应的调控提供了新的见解,特别是确定了一个在初级代谢中具有明显作用的模块,该模块对干旱的响应非常强烈。我们的工作表明,通过使用因子实验将泛基因组分析与转录组数据相结合来理解环境响应的功能基因组学是非常有效的。