School of Science and Technology, University of Camerino, 62032, Camerino, Italy.
Eur Biophys J. 2022 Sep;51(6):431-447. doi: 10.1007/s00249-022-01614-z. Epub 2022 Aug 17.
Nucleic acids' physical properties have been investigated by theoretical methods based both on fully atomistic representations and on coarse-grained models, e.g., the worm-like-chain, taken from polymer physics. In this review article, I discuss an intermediate (mesoscopic) approach and show how to build a three-dimensional Hamiltonian model which accounts for the main interactions responsible for the stability of the helical molecules. While the 3D mesoscopic model yields a sufficiently detailed description of the helix at the level of the base pair, it also allows one to predict the thermodynamical and structural properties of molecules in solution. Relying on the idea that the base pair fluctuations can be conceived as trajectories, I have built over the past years a computational method based on the time-dependent path integral formalism to derive the partition function. While the main features of the method are presented, I focus here in particular on a newly developed statistical method to set the maximum amplitude of the base pair fluctuations, a key parameter of the theory. Some applications to the calculation of DNA flexibility properties are discussed together with the available experimental data.
核酸的物理性质已经通过基于全原子表示和粗粒模型的理论方法进行了研究,例如来自聚合物物理的蠕虫状链。在这篇综述文章中,我讨论了一种中间(介观)方法,并展示了如何构建一个三维哈密顿模型,该模型考虑了导致螺旋分子稳定的主要相互作用。虽然 3D 介观模型在碱基对水平上对螺旋提供了足够详细的描述,但它也允许预测分子在溶液中的热力学和结构性质。基于碱基对波动可以被设想为轨迹的想法,我在过去几年中构建了一种基于含时路径积分形式主义的计算方法来推导配分函数。虽然介绍了该方法的主要特点,但我特别关注一种新开发的统计方法,以确定碱基对波动的最大幅度,这是理论的一个关键参数。讨论了一些应用于计算 DNA 柔韧性性质的方法,并与现有的实验数据进行了比较。