EaStCHEM School of Chemistry and Biomedical Sciences Research Complex, Centre of Magnetic Resonance, University of St Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
J Phys Chem Lett. 2022 Aug 25;13(33):7847-7852. doi: 10.1021/acs.jpclett.2c01719. Epub 2022 Aug 17.
Self-assembly of protein monomers directed by metal ion coordination constitutes a promising strategy for designing supramolecular architectures complicated by the noncovalent interaction between monomers. Herein, two pulse dipolar electron paramagnetic resonance spectroscopy (PDS) techniques, pulse electron-electron double resonance and relaxation-induced dipolar modulation enhancement, were simultaneously employed to study the Cu-templated dimerization behavior of a model protein ( sp. group G, protein G B1 domain) in both phosphate and Tris-HCl buffers. A cooperative binding model could simultaneously fit all data and demonstrate that the cooperativity of protein dimerization across α-helical double-histidine motifs in the presence of Cu is strongly modulated by the buffer, representing a platform for highly tunable buffer-switchable templated dimerization. Hence, PDS enriches the family of techniques for monitoring binding processes, supporting the development of novel strategies for bioengineering structures and stable architectures assembled by an initial metal-templated dimerization.
蛋白质单体在金属离子配位作用下的自组装为设计超分子结构提供了一种很有前途的策略,因为超分子结构的复杂性是由单体之间的非共价相互作用引起的。本文采用两种脉冲双电子顺磁共振波谱(PDS)技术,即脉冲电子-电子双共振和弛豫诱导偶极调制增强技术,同时研究了模型蛋白(sp. 组 G,蛋白 G B1 结构域)在磷酸盐和 Tris-HCl 缓冲液中的 Cu 模板二聚化行为。一个协同结合模型可以同时拟合所有数据,并证明在 Cu 存在的情况下,跨越α-螺旋双组氨酸基序的蛋白质二聚化的协同性强烈受到缓冲液的调制,这代表了一个高度可调的缓冲液切换模板二聚化的平台。因此,PDS 丰富了监测结合过程的技术家族,为通过初始金属模板二聚化组装生物工程结构和稳定结构的新策略提供了支持。