Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States.
Anal Chem. 2022 Aug 30;94(34):11865-11872. doi: 10.1021/acs.analchem.2c02359. Epub 2022 Aug 17.
Simultaneous elemental detection of F and Cl offers quantitation of fluorinated and chlorinated compounds and their transformation products without compound-specific standards. Despite wide-ranging applications, this capability has been hindered by fundamental and technical shortcomings of current inductively coupled plasma (ICP)-MS methods in ion formation and isobaric interference elimination. These hurdles are alleviated here via a chemical ionization method. Fluorine and chlorine in analytes are first converted to HF and HCl by an ICP with post-plasma recombination and subsequently react with barium-containing ions supplied by a nanospray, yielding BaF and BaCl as elemental reporter ions. Notably, the method is readily interfaced to an Orbitrap MS which eliminates isobaric interferences at resolving powers as low as 35,000, far greater than that of current ICP-MS instruments. Moreover, the instrument is easily reverted to the ESI-MS mode for complementary molecular characterization. To demonstrate analytical capabilities, a workflow for rapid quantitation of compounds separated by reversed-phase liquid chromatography is developed using a species-independent calibration. The independent F and Cl measurements agree with each other, providing recoveries of >90% and LODs of 8-12 pmol Cl and 5-12 pmol F on the column. The workflow along with LC-ESI-MS on the same instrument is then applied to identify and quantify in-vitro drug metabolites, yielding total drug-related material recoveries of >80% and quantitation of minor metabolites summing to 8% of the total drug-related compounds. These results highlight the strengths of simultaneous F and Cl speciation for rapid quantitation with applications in early drug development.
同时元素检测 F 和 Cl 提供定量氟化和氯化化合物及其转化产物,而无需特定于化合物的标准。尽管有广泛的应用,但由于当前电感耦合等离子体质谱 (ICP)-MS 方法在离子形成和同量异位干扰消除方面存在根本和技术上的缺陷,这一能力受到了限制。这些障碍在这里通过化学电离方法得到缓解。通过 ICP 将分析物中的氟和氯首先转化为 HF 和 HCl,然后与等离子体后重组,并随后与纳米喷雾提供的含钡离子反应,生成 BaF 和 BaCl 作为元素报告离子。值得注意的是,该方法很容易与轨道阱 MS 接口,该接口在分辨率低至 35,000 时消除同量异位干扰,远高于当前 ICP-MS 仪器的分辨率。此外,该仪器很容易恢复到 ESI-MS 模式以进行互补的分子特征分析。为了展示分析能力,开发了一种使用与物种无关的校准快速定量反相液相色谱分离化合物的工作流程。独立的 F 和 Cl 测量结果相互一致,提供了 >90%的回收率和在柱上 8-12 pmol Cl 和 5-12 pmol F 的检出限。然后将该工作流程与同一仪器上的 LC-ESI-MS 一起应用于鉴定和定量体外药物代谢物,得到 >80%的总药物相关物质回收率和定量的次要代谢物,占总药物相关化合物的 8%。这些结果突出了同时进行 F 和 Cl 形态分析的优势,可用于快速定量,并在早期药物开发中具有应用前景。