Chiciudean Iulia, Russo Giancarlo, Bogdan Diana Felicia, Levei Erika Andrea, Faur Luchiana, Hillebrand-Voiculescu Alexandra, Moldovan Oana Teodora, Banciu Horia Leonard
Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Cluj-Napoca, Romania.
EMBL Partner Institute for Genome Editing, Life Sciences Center-Vilnius University, Vilnius, Lithuania.
Environ Microbiome. 2022 Aug 17;17(1):44. doi: 10.1186/s40793-022-00438-w.
Movile Cave (SE Romania) is a chemoautotrophically-based ecosystem fed by hydrogen sulfide-rich groundwater serving as a primary energy source analogous to the deep-sea hydrothermal ecosystems. Our current understanding of Movile Cave microbiology has been confined to the sulfidic water and its proximity, as most studies focused on the water-floating microbial mat and planktonic accumulations likely acting as the primary production powerhouse of this unique subterranean ecosystem. By employing comprehensive genomic-resolved metagenomics, we questioned the spatial variation, chemoautotrophic abilities, ecological interactions and trophic roles of Movile Cave's microbiome thriving beyond the sulfidic-rich water.
A customized bioinformatics pipeline led to the recovery of 106 high-quality metagenome-assembled genomes from 7 cave sediment metagenomes. Assemblies' taxonomy spanned 19 bacterial and three archaeal phyla with Acidobacteriota, Chloroflexota, Proteobacteria, Planctomycetota, Ca. Patescibacteria, Thermoproteota, Methylomirabilota, and Ca. Zixibacteria as prevalent phyla. Functional gene analyses predicted the presence of CO fixation, methanotrophy, sulfur and ammonia oxidation in the explored sediments. Species Metabolic Coupling Analysis of metagenome-scale metabolic models revealed the highest competition-cooperation interactions in the sediments collected away from the water. Simulated metabolic interactions indicated autotrophs and methanotrophs as major donors of metabolites in the sediment communities. Cross-feeding dependencies were assumed only towards 'currency' molecules and inorganic compounds (O, PO, H, Fe, Cu) in the water proximity sediment, whereas hydrogen sulfide and methanol were assumedly traded exclusively among distant gallery communities.
These findings suggest that the primary production potential of Movile Cave expands way beyond its hydrothermal waters, enhancing our understanding of the functioning and ecological interactions within chemolithoautotrophically-based subterranean ecosystems.
莫维勒洞穴(罗马尼亚东南部)是一个以化学自养为基础的生态系统,由富含硫化氢的地下水提供养分,该地下水作为主要能源,类似于深海热液生态系统。我们目前对莫维勒洞穴微生物学的理解仅限于含硫水及其附近区域,因为大多数研究集中在可能作为这个独特地下生态系统初级生产动力源的水面漂浮微生物垫和浮游生物聚集体上。通过采用全面的基因组解析宏基因组学方法,我们探究了莫维勒洞穴中在富含硫化物的水之外繁盛的微生物群落的空间变异、化学自养能力、生态相互作用和营养作用。
一个定制的生物信息学流程从7个洞穴沉积物宏基因组中成功获得了106个高质量的宏基因组组装基因组。组装后的分类涵盖19个细菌门和3个古菌门,其中酸杆菌门、绿弯菌门、变形菌门、浮霉菌门、候选门类Patescibacteria、热变形菌门、甲基微菌门和候选门类Zixibacteria为优势门类。功能基因分析预测在所探究的沉积物中存在一氧化碳固定、甲烷营养、硫和氨氧化。宏基因组规模代谢模型的物种代谢耦合分析表明,在远离水体处采集的沉积物中竞争 - 合作相互作用最为强烈。模拟的代谢相互作用表明自养生物和甲烷营养生物是沉积物群落中代谢物的主要供体。仅在靠近水体的沉积物中,推测存在对“通用”分子和无机化合物(氧、磷酸根、氢、铁和铜)的交叉喂养依赖性,而硫化氢和甲醇据推测仅在较远的廊道群落之间进行交换。
这些发现表明,莫维勒洞穴的初级生产潜力远远超出其热液水域,增进了我们对基于化能自养的地下生态系统的功能和生态相互作用的理解。