Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France.
Q Rev Biophys. 2022 Aug 18;55:e10. doi: 10.1017/S0033583522000105.
Trp is unique among the amino acids since it is involved in many different types of noncovalent interactions such as electrostatic and hydrophobic ones, but also in π-π, π-cation, π-anion and π-ion pair interactions. In membranotropic peptides and proteins, Trp locates preferentially at the water-membrane interface. In antimicrobial or cell-penetrating peptides (AMPs and CPPs respectively), Trp is well-known for its strong role in the capacity of these peptides to interact and affect the membrane organisation of both bacteria and animal cells at the level of the lipid bilayer. This essential amino acid can however be involved in other types of interactions, not only with lipids, but also with other membrane partners, that are crucial to understand the functional roles of membranotropic peptides. This review is focused on this latter less known role of Trp and describes in details, both in qualitative and quantitative ways: (i) the physico-chemical properties of Trp; (ii) its effect in CPP internalisation; (iii) its importance in AMP activity; (iv) its role in the interaction of AMPs with glycoconjugates or lipids in bacteria membranes and the consequences on the activity of the peptides; (v) its role in the interaction of CPPs with negatively charged polysaccharides or lipids of animal membranes and the consequences on the activity of the peptides. We intend to bring highlights of the physico-chemical properties of Trp and describe its extensive possibilities of interactions, not only at the well-known level of the lipid bilayer, but with other less considered cell membrane components, such as carbohydrates and the extracellular matrix. The focus on these interactions will allow the reader to reevaluate reported studies. Altogether, our review gathers dedicated studies to show how unique are Trp properties, which should be taken into account to design future membranotropic peptides with expected antimicrobial or cell-penetrating activity.
色氨酸是所有氨基酸中独一无二的,因为它参与了许多不同类型的非共价相互作用,如静电相互作用和疏水相互作用,但也参与了π-π、π-阳离子、π-阴离子和π-离子对相互作用。在膜转导肽和蛋白质中,色氨酸优先位于水-膜界面。在抗菌肽或细胞穿透肽(分别为 AMPs 和 CPPs)中,色氨酸以其强作用而闻名,这种作用是这些肽与细菌和动物细胞膜脂质双层相互作用并影响其组织的能力。然而,这种必需氨基酸还可以参与其他类型的相互作用,不仅与脂质有关,还与其他膜伴侣有关,这对于理解膜转导肽的功能作用至关重要。本综述重点关注色氨酸的这一不太为人知的作用,并详细描述了色氨酸的(i)物理化学性质;(ii)在 CPP 内化中的作用;(iii)在 AMP 活性中的重要性;(iv)在 AMP 与细菌膜中的糖缀合物或脂质相互作用及其对肽活性的影响中的作用;(v)在 CPP 与动物膜中带负电荷的多糖或脂质相互作用及其对肽活性的影响中的作用。我们旨在强调色氨酸的物理化学性质的亮点,并描述其广泛的相互作用可能性,不仅在众所周知的脂质双层水平上,而且与其他不太考虑的细胞膜成分,如碳水化合物和细胞外基质相互作用。对这些相互作用的关注将使读者重新评估已报道的研究。总之,我们的综述汇集了专门的研究,以展示色氨酸性质的独特性,这应该在设计具有预期抗菌或细胞穿透活性的新型膜转导肽时加以考虑。