Yan Meng, Zhao Zejun, Wang Teng, Chen Rui, Zhou Chenming, Qin Yifan, Yang Shuai, Zhang Mingchang, Yang Yong
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, P. R. China.
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
Small. 2022 Sep;18(37):e2203630. doi: 10.1002/smll.202203630. Epub 2022 Aug 18.
Constructing hierarchical heterostructures is considered a useful strategy to regulate surface electronic structure and improve the electrochemical kinetics. Herein, the authors develop a hollow architecture composed of MoC and WC carbide nanoparticles and carbon matrix for boosting electrocatalytic hydrogen evolution and lithium ions storage. The hybridization of ultrafine nanoparticles confined in the N-doped carbon nanosheets provides an appropriate hydrogen adsorption free energy and abundant boundary interfaces for lithium intercalation, leading to the synergistically enhanced composite conductivity. As a proof of concept, the as-prepared catalyst exhibits outstanding and durable electrocatalytic performance with a low overpotential of 103 and 163 mV at 10 mA cm , as well as a Tafel slope of 58 and 90 mV dec in alkaline electrolyte and acid electrolyte, respectively. Moreover, evaluated as an anode for a lithium-ion battery, the as-resulted sample delivers a rate capability of 1032.1 mA h g at 0.1 A g . This electrode indicates superior cyclability with a capability of 679.1 mA h g at 5 A g after 4000 cycles. The present work provides a strategy to design effective and stable bimetallic carbide composites as superior electrocatalysts and electrode materials.
构建分层异质结构被认为是调节表面电子结构和改善电化学动力学的一种有效策略。在此,作者开发了一种由碳化钼和碳化钨纳米颗粒与碳基质组成的中空结构,用于促进电催化析氢和锂离子存储。限制在氮掺杂碳纳米片中的超细纳米颗粒的杂化提供了合适的氢吸附自由能和丰富的锂嵌入边界界面,从而协同增强了复合材料的导电性。作为概念验证,所制备的催化剂表现出优异且持久的电催化性能,在碱性电解质和酸性电解质中,在10 mA cm 下的过电位分别低至103和163 mV,塔菲尔斜率分别为58和90 mV dec 。此外,作为锂离子电池的阳极进行评估时,所得样品在0.1 A g 下的倍率性能为1032.1 mA h g 。该电极显示出优异的循环稳定性,在4000次循环后,在5 A g 下的容量为679.1 mA h g 。本工作提供了一种策略,可设计出有效且稳定的双金属碳化物复合材料作为优异的电催化剂和电极材料。