Suppr超能文献

治疗性肽在非传染性慢性疾病中的体内降解形式、抗降解策略和临床应用。

In vivo degradation forms, anti-degradation strategies, and clinical applications of therapeutic peptides in non-infectious chronic diseases.

机构信息

Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.

Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA.

出版信息

Eur J Pharmacol. 2022 Oct 15;932:175192. doi: 10.1016/j.ejphar.2022.175192. Epub 2022 Aug 16.

Abstract

Current medicinal treatments for diseases comprise largely of two categories: small molecular (chemical) (e.g., aspirin) and larger molecular (peptides/proteins, e.g., insulin) drugs. Whilst both types of therapeutics can effectively treat different diseases, ranging from well-understood (in view of pathogenesis and treatment) examples (e.g., flu), to less-understood chronic diseases (e.g., diabetes), classical small molecule drugs often possess significant side-effects (a major cause of drug withdrawal from market) due to their low- or non-specific targeting. By contrast, therapeutic peptides, which comprise short sequences from naturally occurring peptides/proteins, commonly demonstrate high target specificity, well-characterized modes-of-action, and low or non-toxicity in vivo. Unfortunately, due to their small size, linear permutation, and lack of tertiary structure, peptidic drugs are easily subject to rapid degradation or loss in vivo through chemical and physical routines, thus resulting in a short half-life and reduced therapeutic efficacy, a major drawback that can reduce therapeutic efficiency. However, recent studies demonstrate that the short half-life of peptidic drugs can be significantly extended by various means, including use of enantiomeric or non-natural amino acids (AAs) (e.g., L-AAs replacement with D-AAs), chemical conjugation [e.g., with polyethylene glycol], and encapsulation (e.g., in exosomes). In this context, we provide an overview of the major in vivo degradation forms of small therapeutic peptides in the plasma and anti-degradation strategies. We also update on the progress of small peptide therapeutics that are either currently in clinical trials or are being successfully used in clinical therapies for patients with non-infectious diseases, such as diabetes, multiple sclerosis, and cancer.

摘要

目前的疾病治疗方法主要包括两类

小分子(化学)(如阿司匹林)和大分子(肽/蛋白质,如胰岛素)药物。虽然这两种类型的治疗药物都可以有效地治疗不同的疾病,从了解透彻的(根据发病机制和治疗方法)的例子(如流感)到了解较少的慢性疾病(如糖尿病),但经典的小分子药物由于其低特异性或非特异性靶向,常常具有显著的副作用(导致药物从市场撤出的主要原因)。相比之下,治疗肽由天然存在的肽/蛋白质中的短序列组成,通常表现出高靶特异性、特征明确的作用模式,以及体内低毒性或非毒性。不幸的是,由于其体积小、线性排列和缺乏三级结构,肽类药物很容易在体内通过化学和物理常规迅速降解或丢失,从而导致半衰期短,治疗效果降低,这是一个主要的缺点,会降低治疗效率。然而,最近的研究表明,通过各种方法可以显著延长肽类药物的半衰期,包括使用对映体或非天然氨基酸(AAs)(例如,用 D-AAs 替代 L-AAs)、化学偶联[例如,与聚乙二醇]和封装(例如,在外体中)。在这种情况下,我们概述了小治疗肽在血浆中的主要体内降解形式和抗降解策略。我们还更新了目前正在临床试验中或正在成功用于治疗非传染性疾病(如糖尿病、多发性硬化症和癌症)患者的小肽治疗的进展。

相似文献

1
2
Biomedical Applications of a Novel Class of High-Affinity Peptides.
Acc Chem Res. 2021 Sep 21;54(18):3576-3592. doi: 10.1021/acs.accounts.1c00239. Epub 2021 Aug 18.
3
Enantiomeric purity of synthetic therapeutic peptides: A review.
Chirality. 2024 Mar;36(3). doi: 10.1002/chir.23652.
4
Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.
Bioorg Med Chem. 2018 Jun 1;26(10):2759-2765. doi: 10.1016/j.bmc.2018.01.012. Epub 2018 Jan 31.
5
Design Strategies and Medicinal Applications of Metal-Peptidic Bioconjugates.
Bioconjug Chem. 2020 May 20;31(5):1279-1288. doi: 10.1021/acs.bioconjchem.0c00152. Epub 2020 Apr 14.
6
Peptides and peptide conjugates: therapeutics on the upward path.
Future Med Chem. 2012 Aug;4(12):1567-86. doi: 10.4155/fmc.12.76.
7
Peptide Drugs: Current Status and it's Applications in the Treatment of Various Diseases.
Curr Drug Res Rev. 2024;16(3):381-394. doi: 10.2174/0125899775295960240406073630.
8
Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy.
Acta Biomater. 2018 Nov;81:20-42. doi: 10.1016/j.actbio.2018.09.049. Epub 2018 Sep 28.
9
The impact of PEGylation on biological therapies.
BioDrugs. 2008;22(5):315-29. doi: 10.2165/00063030-200822050-00004.
10
PEGylated prodrugs of antidiabetic peptides amylin and GLP-1.
J Control Release. 2018 Dec 28;292:58-66. doi: 10.1016/j.jconrel.2018.05.001. Epub 2018 May 2.

引用本文的文献

2
Breaking the oncogenic alliance: advances in disrupting the MTDH-SND1 complex for cancer therapy.
RSC Adv. 2025 Aug 26;15(37):30165-30188. doi: 10.1039/d5ra04310g. eCollection 2025 Aug 22.
6
A Streamlined High-Throughput LC-MS Assay for Quantifying Peptide Degradation in Cell Culture.
J Biomed Mater Res A. 2025 Jan;113(1):e37864. doi: 10.1002/jbm.a.37864.
7
A Streamlined High-Throughput LC-MS Assay for Quantifying Peptide Degradation in Cell Culture.
bioRxiv. 2024 Oct 15:2024.10.11.617883. doi: 10.1101/2024.10.11.617883.
8
Quantifying and Controlling the Proteolytic Degradation of Cell Adhesion Peptides.
ACS Biomater Sci Eng. 2024 Aug 12;10(8):4916-4926. doi: 10.1021/acsbiomaterials.4c00736. Epub 2024 Jul 5.
9
Degradation of the α-Carboxyl Terminus 11 Peptide: and Impacts of Time, Temperature, Inhibitors, and Gender in Rat.
ACS Pharmacol Transl Sci. 2024 Apr 22;7(5):1624-1636. doi: 10.1021/acsptsci.4c00120. eCollection 2024 May 10.
10
Quantifying and controlling the proteolytic degradation of cell adhesion peptides.
bioRxiv. 2024 Apr 24:2024.04.19.590329. doi: 10.1101/2024.04.19.590329.

本文引用的文献

1
SOHO State of the Art Updates and Next Questions: Managing Relapsed Mantle Cell Lymphoma.
Clin Lymphoma Myeloma Leuk. 2022 Aug;22(8):557-565. doi: 10.1016/j.clml.2022.01.008. Epub 2022 Jan 11.
3
Novel Protocols for Scalable Production of High Quality Purified Small Extracellular Vesicles from Bovine Milk.
Nanotheranostics. 2021 Jul 5;5(4):488-498. doi: 10.7150/ntno.62213. eCollection 2021.
4
Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis.
Liver Res. 2020 Jun;4(2):47-63. doi: 10.1016/j.livres.2020.05.001. Epub 2020 Jun 3.
5
Amino Acid and Peptide-Based Antiviral Agents.
ChemMedChem. 2021 Oct 15;16(20):3106-3135. doi: 10.1002/cmdc.202100397. Epub 2021 Aug 3.
7
Treatment of type 2 diabetes: challenges, hopes, and anticipated successes.
Lancet Diabetes Endocrinol. 2021 Aug;9(8):525-544. doi: 10.1016/S2213-8587(21)00113-3. Epub 2021 Jun 25.
8
Commemorating insulin's centennial: engineering insulin pharmacology towards physiology.
Trends Pharmacol Sci. 2021 Aug;42(8):620-639. doi: 10.1016/j.tips.2021.05.005. Epub 2021 Jun 18.
9
Peptidic Connexin43 Therapeutics in Cardiac Reparative Medicine.
J Cardiovasc Dev Dis. 2021 May 5;8(5):52. doi: 10.3390/jcdd8050052.
10
Molecular Engineering of Insulin Icodec, the First Acylated Insulin Analog for Once-Weekly Administration in Humans.
J Med Chem. 2021 Jul 8;64(13):8942-8950. doi: 10.1021/acs.jmedchem.1c00257. Epub 2021 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验