Peter Munk Cardiac Center, Division of Cardiology, Toronto General Hospital, University Health Network, Toronto, Canada.
Department of Computer Sciences, University of Toronto, Toronto, Canada.
JACC Clin Electrophysiol. 2022 Aug;8(8):1010-1020. doi: 10.1016/j.jacep.2022.05.003. Epub 2022 Jun 29.
The diagnosis of Brugada syndrome by 12-lead electrocardiography (ECG) is challenging because the diagnostic type 1 pattern is often transient.
This study sought to improve Brugada syndrome diagnosis by using deep learning (DL) to continuously monitor for Brugada type 1 in 24-hour ambulatory 12-lead ECGs (Holters).
A convolutional neural network was trained to classify Brugada type 1. The training cohort consisted of 10-second standard/high precordial leads from 12-lead ECGs (n = 1,190) and 12-lead Holters (n = 380) of patients with definite and suspected Brugada syndrome. The performance of the trained model was evaluated in 2 testing cohorts of 10-second standard/high precordial leads from 12-lead ECGs (n = 474) and 12-lead Holters (n = 716).
DL achieved a receiver-operating characteristic area under the curve of 0.976 (95% CI: 0.973-0.979) in classifying Brugada type 1 from 12-lead ECGs and 0.975 (95% CI: 0.966-0.983) from 12-lead Holters. Compared with cardiologist reclassification of Brugada type 1, DL had similar performance and produced robust results in experiments evaluating scalability and explainability. When DL was applied to consecutive 10-second, clean ECGs from 24-hour 12-lead Holters, spontaneous Brugada type 1 was detected in 48% of patients with procainamide-induced Brugada syndrome and in 33% with suspected Brugada syndrome. DL detected no Brugada type 1 in healthy control patients.
This novel DL model achieved cardiologist-level accuracy in classifying Brugada type 1. Applying DL to 24-hour 12-lead Holters significantly improved the detection of Brugada type 1 in patients with procainamide-induced and suspected Brugada syndrome. DL analysis of 12-lead Holters may provide a robust, automated screening tool before procainamide challenge to aid in the diagnosis of Brugada syndrome.
12 导联心电图(ECG)诊断 Brugada 综合征具有挑战性,因为诊断 1 型模式往往是短暂的。
本研究旨在通过使用深度学习(DL)连续监测 24 小时动态 12 导联心电图(Holter)中的 Brugada 1 型,提高 Brugada 综合征的诊断率。
训练卷积神经网络来分类 Brugada 1 型。训练队列由 12 导联 ECG(n=1190)和 12 导联 Holter(n=380)的 10 秒标准/高前导联组成,患者为确诊和疑似 Brugada 综合征。在来自 12 导联 ECG(n=474)和 12 导联 Holter(n=716)的 10 秒标准/高前导联的两个测试队列中评估训练模型的性能。
DL 在从 12 导联 ECG 分类 Brugada 1 型的受试者工作特征曲线下面积为 0.976(95%CI:0.973-0.979),从 12 导联 Holter 为 0.975(95%CI:0.966-0.983)。与 Brugada 1 型的心脏病专家重新分类相比,DL 具有相似的性能,并在评估可扩展性和可解释性的实验中产生了可靠的结果。当 DL 应用于 24 小时 12 导联 Holter 的连续 10 秒清洁 ECG 时,在普罗卡因胺诱导的 Brugada 综合征患者中,48%的患者和疑似 Brugada 综合征患者中 33%的患者中检测到自发性 Brugada 1 型。DL 在健康对照组患者中未检测到 Brugada 1 型。
该新型 DL 模型在 Brugada 1 型分类方面达到了心脏病专家的水平。将 DL 应用于 24 小时 12 导联 Holter 可显著提高普罗卡因胺诱导和疑似 Brugada 综合征患者 Brugada 1 型的检出率。DL 对 12 导联 Holter 的分析可能在普罗卡因胺挑战前提供一种可靠的、自动化的筛查工具,以辅助 Brugada 综合征的诊断。