Suppr超能文献

模拟垂死三角洲印度的水文强度和变化。

Modelling hydrological strength and alteration in moribund deltaic India.

机构信息

Department of Geography, Gour Mahavidyalaya, India.

Department of Geography, University of Gour Banga, India.

出版信息

J Environ Manage. 2022 Oct 1;319:115679. doi: 10.1016/j.jenvman.2022.115679. Epub 2022 Jul 20.

Abstract

The Ganga-Brahmaputra moribund deltaic floodplain region hosted many socio-ecologically precious freshwater wetland ecosystems experiencing hydrological alteration. The present study aimed to model hydrological strength (HS) to show the spatial difference and account for the degree and direction of hydrological alteration of Indian moribund deltaic wetland in three phases e.g. (1) phase I (1988-1997), (2) phase II (1998-2007) and phase III (2008-2017). Three key hydrological parameters, such as Water Presence Frequency (WPF), water depth, and hydro-period were considered for hydrological strength modelling using two ensemble Machine Learning (ML) techniques (Random Forest (RF) and XGBoost). Image algebra was employed for phasal change detection. Hydrological strength models show that around 75% of the wetland area was lost in-between phases I to III and the loss was found more intensive in moderate and weak HS zones. Existing wetland shows a clear spatial difference of HS between wetland core and periphery and river linked and delinked or not linked wetlands. Regarding the suitability of the ML models, both are acceptable, however, the XGBoost outperformed in reference to applied 15 statistical validation techniques and field evidence. HS models based on change detection clarified that more than 22% and 55% of the weak HS zone in phases II and III respectively were turned into non-wetland. The degree of alteration revealed that about 40% of wetland areas experienced a negative alteration during phases I to II, and this proportion increased to 63% in between phases II to III. Since the study figured out the spatial nature of HS, degree and direction of alteration at a spatial scale, these findings would be instrumental for adopting rational planning towards wetland conservation and restoration.

摘要

恒河-布拉马普特拉河濒死三角洲洪泛平原地区拥有许多具有社会生态价值的淡水湿地生态系统,但这些生态系统正经历着水文变化。本研究旨在通过建模水文强度(HS)来展示空间差异,并说明印度濒死三角洲湿地在三个阶段的水文变化程度和方向,这三个阶段分别是:(1)阶段 I(1988-1997 年)、(2)阶段 II(1998-2007 年)和阶段 III(2008-2017 年)。在水文强度建模中,考虑了三个关键的水文参数,如水存在频率(WPF)、水深和水期,并使用两种集成机器学习(ML)技术(随机森林(RF)和 XGBoost)进行建模。图像代数被用于分相变化检测。水文强度模型表明,在阶段 I 到阶段 III 之间,大约 75%的湿地面积已经消失,并且在中等到弱 HS 区的损失更为严重。现有的湿地在湿地核心区和周边地区、与河流相连和不相连或没有相连的湿地之间,HS 存在明显的空间差异。关于 ML 模型的适用性,两种模型都可以接受,但 XGBoost 在应用的 15 种统计验证技术和实地证据方面表现更好。基于变化检测的 HS 模型表明,在阶段 II 和阶段 III 中,分别有超过 22%和 55%的弱 HS 区转变为非湿地。变化程度表明,在阶段 I 到阶段 II 期间,约有 40%的湿地面积经历了负面变化,而在阶段 II 到阶段 III 期间,这一比例增加到 63%。由于该研究在空间尺度上确定了 HS 的空间性质、变化程度和方向,这些发现将有助于采取合理的湿地保护和恢复规划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验