Suppr超能文献

在人诱导多能干细胞衍生的心脏微生理系统中验证高、中、低风险药物的致心律失常潜力。

Validating the Arrhythmogenic Potential of High-, Intermediate-, and Low-Risk Drugs in a Human-Induced Pluripotent Stem Cell-Derived Cardiac Microphysiological System.

作者信息

Charwat Verena, Charrez Bérénice, Siemons Brian A, Finsberg Henrik, Jæger Karoline H, Edwards Andrew G, Huebsch Nathaniel, Wall Samuel, Miller Evan, Tveito Aslak, Healy Kevin E

机构信息

Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, United States.

Simula Research Laboratory, 0164 Oslo, Norway.

出版信息

ACS Pharmacol Transl Sci. 2022 Jul 29;5(8):652-667. doi: 10.1021/acsptsci.2c00088. eCollection 2022 Aug 12.

Abstract

Evaluation of arrhythmogenic drugs is required by regulatory agencies before any new compound can obtain market approval. Despite rigorous review, cardiac disorders remain the second most common cause for safety-related market withdrawal. On the other hand, false-positive preclinical findings prohibit potentially beneficial candidates from moving forward in the development pipeline. Complex models using cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CM) have been identified as a useful tool that allows for rapid and cost-efficient screening of proarrhythmic drug risk. Currently available hiPSC-CM models employ simple two-dimensional (2D) culture formats with limited structural and functional relevance to the human heart muscle. Here, we present the use of our 3D cardiac microphysiological system (MPS), composed of a hiPSC-derived heart micromuscle, as a platform for arrhythmia risk assessment. We employed two different hiPSC lines and tested seven drugs with known ion channel effects and known clinical risk: dofetilide and bepridil (high risk); amiodarone and terfenadine (intermediate risk); and nifedipine, mexiletine, and lidocaine (low risk). The cardiac MPS successfully predicted drug cardiotoxicity risks based on changes in action potential duration, beat waveform (i.e., shape), and occurrence of proarrhythmic events of healthy patient hiPSC lines in the absence of risk cofactors. We showcase examples where the cardiac MPS outperformed existing hiPSC-CM 2D models.

摘要

任何新化合物在获得市场批准之前,监管机构都要求对致心律失常药物进行评估。尽管进行了严格审查,但心脏疾病仍是与安全性相关的市场撤市的第二大常见原因。另一方面,临床前的假阳性结果阻碍了潜在有益的候选药物在研发流程中取得进展。使用源自人诱导多能干细胞的心肌细胞(hiPSC-CM)构建的复杂模型已被确定为一种有用的工具,可用于快速且经济高效地筛选致心律失常药物风险。目前可用的hiPSC-CM模型采用简单的二维(2D)培养形式,与人类心肌的结构和功能相关性有限。在此,我们展示了使用我们的三维心脏微生理系统(MPS),其由hiPSC衍生的心脏微肌肉组成,作为心律失常风险评估的平台。我们使用了两种不同的hiPSC系,并测试了七种已知具有离子通道效应和已知临床风险的药物:多非利特和苄普地尔(高风险);胺碘酮和特非那定(中度风险);以及硝苯地平、美西律和利多卡因(低风险)。在没有风险辅助因素的情况下,心脏MPS基于健康患者hiPSC系的动作电位持续时间、搏动波形(即形状)和致心律失常事件的发生情况,成功预测了药物心脏毒性风险。我们展示了心脏MPS优于现有hiPSC-CM二维模型的示例。

相似文献

8
Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications.
Acta Biomater. 2019 Jul 1;92:145-159. doi: 10.1016/j.actbio.2019.05.016. Epub 2019 May 7.
9
Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity.
Circulation. 2013 Apr 23;127(16):1677-91. doi: 10.1161/CIRCULATIONAHA.113.001883. Epub 2013 Mar 21.

引用本文的文献

2
In Vitro Modeling of Interorgan Crosstalk: Multi-Organ-on-a-Chip for Studying Cardiovascular-Kidney-Metabolic Syndrome.
Circ Res. 2025 May 23;136(11):1476-1493. doi: 10.1161/CIRCRESAHA.125.325497. Epub 2025 May 22.
4
Extended voltage imaging in cardiomyocytes with a triplet state quencher-stabilized silicon rhodamine.
Bioorg Med Chem Lett. 2024 Sep 1;109:129842. doi: 10.1016/j.bmcl.2024.129842. Epub 2024 Jun 4.
7
Predicting individual-specific cardiotoxicity responses induced by tyrosine kinase inhibitors.
Front Pharmacol. 2023 Apr 10;14:1158222. doi: 10.3389/fphar.2023.1158222. eCollection 2023.

本文引用的文献

1
Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips.
Nat Biomed Eng. 2022 Apr;6(4):372-388. doi: 10.1038/s41551-022-00884-4. Epub 2022 Apr 27.
2
A Change of Heart: Human Cardiac Tissue Engineering as a Platform for Drug Development.
Curr Cardiol Rep. 2022 May;24(5):473-486. doi: 10.1007/s11886-022-01668-7. Epub 2022 Mar 5.
3
Cardiotoxicity assessment using 3D vascularized cardiac tissue consisting of human iPSC-derived cardiomyocytes and fibroblasts.
Mol Ther Methods Clin Dev. 2021 May 21;22:338-349. doi: 10.1016/j.omtm.2021.05.007. eCollection 2021 Sep 10.
4
Heart Muscle Microphysiological System for Cardiac Liability Prediction of Repurposed COVID-19 Therapeutics.
Front Pharmacol. 2021 Aug 4;12:684252. doi: 10.3389/fphar.2021.684252. eCollection 2021.
7
In vitro safety "clinical trial" of the cardiac liability of drug polytherapy.
Clin Transl Sci. 2021 May;14(3):1155-1165. doi: 10.1111/cts.13038. Epub 2021 May 3.
8
Hyaluronic Acid Macromer Molecular Weight Dictates the Biophysical Properties and in Vitro Cellular Response to Semisynthetic Hydrogels.
ACS Biomater Sci Eng. 2020 Feb 10;6(2):1135-1143. doi: 10.1021/acsbiomaterials.9b01419. Epub 2020 Jan 10.
9
Comparison of 10 Control hPSC Lines for Drug Screening in an Engineered Heart Tissue Format.
Stem Cell Reports. 2020 Oct 13;15(4):983-998. doi: 10.1016/j.stemcr.2020.09.002.
10
Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes.
Cell Rep. 2020 Jul 21;32(3):107925. doi: 10.1016/j.celrep.2020.107925.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验