Suppr超能文献

用于胺-过氧化物氧化还原聚合的过氧化物氧化剂的计算与实验评估

Computational and Experimental Evaluation of Peroxide Oxidants for Amine-Peroxide Redox Polymerization.

作者信息

Musgrave Charles B, Kim Kangmin, Singstock Nicholas R, Salazar Austyn M, Stansbury Jeffrey W, Musgrave Charles B

机构信息

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States; Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.

Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.

出版信息

Macromolecules. 2020 Nov 24;53(22):9736-9746. doi: 10.1021/acs.macromol.0c02069. Epub 2020 Nov 13.

Abstract

Amine-peroxide redox polymerization (APRP) is the prevalent method for producing radical-based polymers in the many industrial and medical applications where light or heat activation is impractical. We recently developed a detailed description of the APRP initiation process through a combined computational and experimental effort to show that APRP proceeds through S2 attack by the amine on the peroxide, followed by the rate-determining homolysis of the resulting intermediate. Using this new mechanistic understanding, a variety of peroxides were computationally predicted to initiate APRP with fast kinetics. In particular, the rate of APRP initiation can be improved by radical and anion stabilization through increased -electron conjugation or by increasing the electrophilicity of the peroxy bond through the addition of electron-withdrawing groups. On the other hand, the addition of electron-donating groups lowered the initiation rate. These design principles enabled the computational prediction of several new peroxides that exhibited improved initiation rates over the commonly used benzoyl peroxide. For example, the addition of nitro groups (NO) to the para positions of benzoyl peroxide resulted in a theoretical radical generation rate of 1.9 × 10 s, which is ~150 times faster than the 1.3 × 10 s radical generation rate observed with unsubstituted benzoyl peroxide. These accelerated kinetics enabled the development of a redox-based direct-writing process that exploited the extremely rapid reactivity of an optimized redox pair with a custom inkjet printer, capable of printing custom shapes from polymerizing resins without heat or light. Furthermore, the application of more rapid APRP kinetics could enable the acceleration of existing industrial processes, make new industrial manufacturing methods possible, and improve APRP compatibility with biomedical applications through reduced initiator concentrations that still produce rapid polymerization rates.

摘要

胺 - 过氧化物氧化还原聚合(APRP)是在许多工业和医学应用中生产基于自由基聚合物的常用方法,在这些应用中光或热活化是不切实际的。我们最近通过计算和实验相结合的方法对APRP引发过程进行了详细描述,结果表明APRP是通过胺对过氧化物的S2攻击进行的,随后是所得中间体的速率决定均裂。基于这种新的机理理解,通过计算预测了多种过氧化物能以快速动力学引发APRP。特别是,APRP引发速率可通过增加π电子共轭实现自由基和阴离子稳定,或通过添加吸电子基团提高过氧键的亲电性来提高。另一方面,添加供电子基团会降低引发速率。这些设计原则使得能够通过计算预测出几种新型过氧化物,它们的引发速率比常用的过氧化苯甲酰有所提高。例如,在过氧化苯甲酰的对位添加硝基(NO)导致理论自由基生成速率为1.9×10⁻⁸ s⁻¹,这比未取代的过氧化苯甲酰观察到的1.3×10⁻¹⁰ s⁻¹的自由基生成速率快约150倍。这些加速的动力学使得能够开发一种基于氧化还原的直接书写工艺,该工艺利用优化的氧化还原对与定制喷墨打印机的极高反应活性,能够在不加热或光照的情况下从聚合树脂中打印出定制形状。此外,更快速的APRP动力学的应用可以加速现有工业过程,使新的工业制造方法成为可能,并通过降低引发剂浓度(仍能产生快速聚合速率)来提高APRP与生物医学应用的兼容性。

相似文献

7
Benzoylformamides as versatile photocaged bases for redox free radical photopolymerization.
Photochem Photobiol Sci. 2016 Nov 2;15(11):1442-1447. doi: 10.1039/c6pp00301j.

本文引用的文献

6
Heavy metal toxicity and the environment.重金属毒性与环境
Exp Suppl. 2012;101:133-64. doi: 10.1007/978-3-7643-8340-4_6.
7
Cure mechanisms in materials for use in esthetic dentistry.用于口腔美学修复材料的固化机制。
J Investig Clin Dent. 2012 Feb;3(1):3-16. doi: 10.1111/j.2041-1626.2012.00114.x.
10
Application of long chain amine activator in conventional acrylic bone cement.
J Biomed Mater Res. 1998 Summer;43(2):131-9. doi: 10.1002/(sici)1097-4636(199822)43:2<131::aid-jbm7>3.0.co;2-p.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验