Suppr超能文献

CHAC1 作为一种新型生物标志物,可用于区分脱发和其他皮肤病,并确定其严重程度。

CHAC1 as a novel biomarker for distinguishing alopecia from other dermatological diseases and determining its severity.

机构信息

Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.

Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.

出版信息

IET Syst Biol. 2022 Sep;16(5):173-185. doi: 10.1049/syb2.12048. Epub 2022 Aug 18.

Abstract

Alopecia Areata (AA) is characterised by an autoimmune response to hair follicles (HFs) and its exact pathobiology remains unclear. The current study aims to look into the molecular changes in the skin of AA patients as well as the potential underlying molecular mechanisms of AA in order to identify potential candidates for early detection and treatment of AA. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to identify key modules, hub genes, and mRNA-miRNA regulatory networks associated with AA. Furthermore, Chi2 as a machine-learning algorithm was used to compute the gene importance in AA. Finally, drug-target construction revealed the potential of repositioning drugs for the treatment of AA. Our analysis using four AA data sets established a network strongly correlated to AA pathogenicity based on GZMA, OXCT2, HOXC13, KRT40, COMP, CHAC1, and KRT83 hub genes. Interestingly, machine learning introduced these genes as important in AA pathogenicity. Besides that, using another ten data sets, we showed that CHAC1 could clearly distinguish AA from similar clinical phenotypes, such as scarring alopecia due to psoriasis. Also, two FDA-approved drug candidates and 30 experimentally validated miRNAs were identified that affected the co-expression network. Using transcriptome analysis, suggested CHAC1 as a potential diagnostic predictor to diagnose AA.

摘要

斑秃(AA)的特征是针对毛囊(HFs)的自身免疫反应,其确切的病理生物学仍然不清楚。本研究旨在研究 AA 患者皮肤的分子变化以及 AA 的潜在潜在分子机制,以确定潜在的早期检测和治疗 AA 的候选物。我们应用加权基因共表达网络分析(WGCNA)来识别与 AA 相关的关键模块、枢纽基因和 mRNA-miRNA 调控网络。此外,Chi2 作为一种机器学习算法,用于计算 AA 中的基因重要性。最后,药物靶标构建揭示了重新定位药物治疗 AA 的潜力。我们使用四个 AA 数据集的分析基于 GZMA、OXCT2、HOXC13、KRT40、COMP、CHAC1 和 KRT83 枢纽基因,建立了一个与 AA 发病机制密切相关的网络。有趣的是,机器学习将这些基因引入为 AA 发病机制中的重要因素。除此之外,我们使用另外十个数据集表明,CHAC1 可以清楚地区分 AA 与类似的临床表型,如由于银屑病引起的瘢痕性脱发。此外,还确定了两种已批准的 FDA 药物候选物和 30 种经过实验验证的 miRNA,这些 miRNA 影响共表达网络。通过转录组分析,提示 CHAC1 作为潜在的诊断预测因子用于诊断 AA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaa6/9469792/e6837f314cb1/SYB2-16-173-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验