Suppr超能文献

将 N 端己糖激酶 I 结合位点映射到电压依赖性阴离子通道 1 以阻断周围神经脱髓鞘。

Mapping the N-Terminal Hexokinase-I Binding Site onto Voltage-Dependent Anion Channel-1 To Block Peripheral Nerve Demyelination.

机构信息

Institut des Neurosciences de Montpellier, Université de Montpellier, 80 rue A. Fliche, Montpellier 34091, France.

UAR CNRS 3278, Centre de Recherche Insulaire et Observatoire de l'Environnement (CRIOBE), CNRS-EPHE-UPVD, Université de Perpignan Via Domitia, bâtiment T, 58 avenue P. Alduy, Perpignan 66860, France.

出版信息

J Med Chem. 2022 Sep 8;65(17):11633-11647. doi: 10.1021/acs.jmedchem.2c00411. Epub 2022 Aug 19.

Abstract

The voltage-dependent anion channel (VDAC), the most abundant protein on the outer mitochondrial membrane, is implicated in ATP, ion and metabolite exchange with cell compartments. In particular, the VDAC participates in cytoplasmic and mitochondrial Ca homeostasis. Notably, the Ca efflux out of Schwann cell mitochondria is involved in peripheral nerve demyelination that underlies most peripheral neuropathies. Hexokinase (HK) isoforms I and II, the main ligands of the VDAC, possess a hydrophobic N-terminal structured in α-helix (NHKI) that is necessary for the binding to the VDAC. To gain further insight into the molecular basis of HK binding to the VDAC, we developed and optimized peptides based on the NHKI sequence. These modifications lead to an increase of the peptide hydrophobicity and helical content that enhanced their ability to prevent peripheral nerve demyelination. Our results provide new insights into the molecular basis of VDAC/HK interaction that could lead to the development of therapeutic compounds for demyelinating peripheral neuropathies.

摘要

电压依赖性阴离子通道(VDAC)是线粒体外膜上最丰富的蛋白质,它与细胞隔室之间的 ATP、离子和代谢物交换有关。特别是,VDAC 参与细胞质和线粒体 Ca 稳态。值得注意的是,施万细胞线粒体中的 Ca 外流参与了周围神经脱髓鞘,这是大多数周围神经病变的基础。己糖激酶(HK)同工酶 I 和 II 是 VDAC 的主要配体,它们具有疏水的 N 端结构(NHKI),该结构对于与 VDAC 的结合是必需的。为了更深入地了解 HK 与 VDAC 结合的分子基础,我们基于 NHKI 序列开发并优化了肽。这些修饰增加了肽的疏水性和螺旋含量,从而增强了它们预防周围神经脱髓鞘的能力。我们的结果为 VDAC/HK 相互作用的分子基础提供了新的见解,这可能为脱髓鞘性周围神经病变的治疗化合物的开发提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验