Suppr超能文献

己糖激酶-I直接与线粒体电压依赖性阴离子通道蛋白1(VDAC1)和电压依赖性阴离子通道蛋白2(VDAC2)中一个带电荷的膜内谷氨酸结合。

Hexokinase-I directly binds to a charged membrane-buried glutamate of mitochondrial VDAC1 and VDAC2.

作者信息

Bieker Sebastian, Timme Michael, Woge Nils, Hassan Dina G, Brown Chelsea M, Marrink Siewert J, Melo Manuel N, Holthuis Joost C M

机构信息

Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany.

Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076, Osnabrück, Germany.

出版信息

Commun Biol. 2025 Feb 10;8(1):212. doi: 10.1038/s42003-025-07551-9.

Abstract

Binding of hexokinase HKI to mitochondrial voltage-dependent anion channels (VDACs) has far-reaching physiological implications. However, the structural basis of this interaction is unclear. Combining computer simulations with experiments in cells, we here show that complex assembly relies on intimate contacts between the N-terminal α-helix of HKI and a charged membrane-buried glutamate on the outer wall of VDAC1 and VDAC2. Protonation of this residue blocks complex formation in silico while acidification of the cytosol causes a reversable release of HKI from mitochondria. Membrane insertion of HKI occurs adjacent to the bilayer-facing glutamate where a pair of polar channel residues mediates a marked thinning of the cytosolic leaflet. Disrupting the membrane thinning capacity of VDAC1 dramatically impairs its ability to bind HKI in silico and in cells. Our data reveal key topological and mechanistic insights into HKI-VDAC complex assembly that may benefit the development of therapeutics to counter pathogenic imbalances in this process.

摘要

己糖激酶HKI与线粒体电压依赖性阴离子通道(VDAC)的结合具有深远的生理意义。然而,这种相互作用的结构基础尚不清楚。通过将计算机模拟与细胞实验相结合,我们在此表明复合物的组装依赖于HKI的N端α螺旋与VDAC1和VDAC2外壁上带电荷的膜埋谷氨酸之间的紧密接触。该残基的质子化在计算机模拟中阻止复合物形成,而细胞质酸化会导致HKI从线粒体中可逆释放。HKI的膜插入发生在面向双层的谷氨酸附近,一对极性通道残基介导细胞质小叶明显变薄。破坏VDAC1的膜变薄能力会显著损害其在计算机模拟和细胞中结合HKI的能力。我们的数据揭示了HKI-VDAC复合物组装的关键拓扑和机制见解,这可能有助于开发治疗药物来对抗这一过程中的致病性失衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/608e/11811193/b5916965d59c/42003_2025_7551_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验