Suppr超能文献

组氨酸标签中甘氨酸和赖氨酸处蛋白质的选择性酰化

Selective Acylation of Proteins at Gly and Lys in His Tags.

作者信息

Jensen Knud J, Thygesen Mikkel B, Sørensen Kasper K, Wu Shunliang, Treiberg Tuule, Schoffelen Sanne

机构信息

Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.

National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.

出版信息

Chembiochem. 2022 Dec 16;23(24):e202200359. doi: 10.1002/cbic.202200359. Epub 2022 Sep 14.

Abstract

The chemical modification of proteins is of great importance in chemical biology, biotechnology, and for the production of modified biopharmaceuticals, as it enables introduction of fluorophores, biotin, half-life extending moieties, and more. We have developed two methods that use poly-His sequences to direct the highly selective acylation of proteins, either at the N-terminus or at a specific Lys residue. For the former, we used an N-terminal Gly-His segment (Gly-His tag) that directed acylation of the N-terminal N -amine with 4-methoxyphenyl esters, resulting in stable conjugates. Next, we developed the peptide sequences His -Lys-His (Lys-His tags) that direct the acylation of the designated Lys N -amine under mild conditions and with high selectivity over native Lys residues. Both the Gly-His and Lys-His tags maintain the capacity for immobilized metal ion affinity chromatography. We have demonstrated the robustness of these methods by attaching different moieties such as azides, fluorophores, and biotin to different proteins, including antibodies.

摘要

蛋白质的化学修饰在化学生物学、生物技术以及修饰生物药物的生产中具有重要意义,因为它能够引入荧光团、生物素、延长半衰期的基团等。我们开发了两种利用多组氨酸序列来指导蛋白质在N端或特定赖氨酸残基处进行高选择性酰化的方法。对于前者,我们使用了一个N端甘氨酸-组氨酸片段(甘氨酸-组氨酸标签),它能引导N端N-胺与4-甲氧基苯基酯进行酰化反应,从而生成稳定的缀合物。接下来,我们开发了肽序列组氨酸-赖氨酸-组氨酸(赖氨酸-组氨酸标签),它能在温和条件下且对天然赖氨酸残基具有高选择性地引导指定赖氨酸N-胺的酰化反应。甘氨酸-组氨酸标签和赖氨酸-组氨酸标签都保持了固定化金属离子亲和色谱的能力。我们通过将不同的基团如叠氮化物、荧光团和生物素连接到包括抗体在内的不同蛋白质上,证明了这些方法的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验