National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China.
Plant Biotechnol J. 2022 Dec;20(12):2258-2271. doi: 10.1111/pbi.13905. Epub 2022 Aug 19.
Plants have evolved complex signalling networks to regulate growth and defence responses under an ever-changing environment. However, the molecular mechanisms underlying the growth-defence tradeoff are largely unclear. We previously reported that rice CALCIUM-DEPENDENT PROTEIN KINASE 18 (OsCPK18) and MITOGEN-ACTIVATED PROTEIN KINASE 5 (OsMPK5) mutually phosphorylate each other and that OsCPK18 phosphorylates and positively regulates OsMPK5 to suppress rice immunity. In this study, we found that OsCPK18 and its paralog OsCPK4 positively regulate plant height and yield-related traits. Further analysis reveals that OsCPK18 and OsMPK5 synergistically regulate defence-related genes but differentially regulate development-related genes. In vitro and in vivo kinase assays demonstrated that OsMPK5 phosphorylates C-terminal threonine (T505) and serine (S512) residues of OsCPK18 and OsCPK4, respectively. The kinase activity of OsCPK18 , in which T505 was replaced by aspartic acid to mimic T505 phosphorylation, displayed less calcium sensitivity than that of wild-type OsCPK18. Interestingly, editing the MAPK phosphorylation motif in OsCPK18 and its paralog OsCPK4, which deprives OsMPK5-mediated phosphorylation but retains calcium-dependent activation of kinase activity, simultaneously increases rice yields and immunity. This editing event also changed the last seven amino acid residues of OsCPK18 and attenuated its binding with OsMPK5. This study presents a new regulatory circuit that fine tunes the growth-defence tradeoff by modulating OsCPK18/4 activity and suggests that CRISPR/Cas9-mediated engineering phosphorylation pathways could simultaneously improve crop yield and immunity.
植物已经进化出复杂的信号网络,以调节在不断变化的环境中的生长和防御反应。然而,生长-防御权衡的分子机制在很大程度上还不清楚。我们之前报道过,水稻钙依赖性蛋白激酶 18(OsCPK18)和丝裂原激活蛋白激酶 5(OsMPK5)相互磷酸化,并且 OsCPK18 磷酸化并正向调节 OsMPK5 以抑制水稻免疫。在这项研究中,我们发现 OsCPK18 和其同源物 OsCPK4 正向调节株高和产量相关性状。进一步的分析表明,OsCPK18 和 OsMPK5 协同调节防御相关基因,但差异调节发育相关基因。体外和体内激酶测定表明,OsMPK5 分别磷酸化 OsCPK18 和 OsCPK4 的 C 端苏氨酸(T505)和丝氨酸(S512)残基。用天冬氨酸替代 T505 模拟 T505 磷酸化的 OsCPK18 的激酶活性比野生型 OsCPK18 的钙敏感性更低。有趣的是,编辑 OsCPK18 和其同源物 OsCPK4 中的 MAPK 磷酸化基序,剥夺了 OsMPK5 介导的磷酸化,但保留了钙依赖性激酶活性的激活,同时提高了水稻的产量和免疫力。这种编辑事件还改变了 OsCPK18 的最后七个氨基酸残基,并减弱了其与 OsMPK5 的结合。本研究提出了一个新的调控回路,通过调节 OsCPK18/4 活性来微调生长-防御权衡,并表明 CRISPR/Cas9 介导的工程磷酸化途径可以同时提高作物产量和免疫力。