Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico.
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico.
Med Image Anal. 2022 Oct;81:102569. doi: 10.1016/j.media.2022.102569. Epub 2022 Aug 6.
Precise instrument segmentation aids surgeons to navigate the body more easily and increases patient safety. While accurate tracking of surgical instruments in real-time plays a crucial role in minimally invasive computer-assisted surgeries, it is a challenging task to achieve, mainly due to: (1) a complex surgical environment, and (2) model design trade-off in terms of both optimal accuracy and speed. Deep learning gives us the opportunity to learn complex environment from large surgery scene environments and placements of these instruments in real world scenarios. The Robust Medical Instrument Segmentation 2019 challenge (ROBUST-MIS) provides more than 10,000 frames with surgical tools in different clinical settings. In this paper, we propose a light-weight single stage instance segmentation model complemented with a convolutional block attention module for achieving both faster and accurate inference. We further improve accuracy through data augmentation and optimal anchor localization strategies. To our knowledge, this is the first work that explicitly focuses on both real-time performance and improved accuracy. Our approach out-performed top team performances in the most recent edition of ROBUST-MIS challenge with over 44% improvement on area-based multi-instance dice metric MI_DSC and 39% on distance-based multi-instance normalized surface dice MI_NSD. We also demonstrate real-time performance (>60 frames-per-second) with different but competitive variants of our final approach.
精密仪器的分割有助于外科医生更轻松地进行导航,提高患者安全性。虽然在微创手术的计算机辅助手术中实时准确地跟踪手术器械起着至关重要的作用,但这是一个具有挑战性的任务,主要原因是:(1)复杂的手术环境,以及(2)在最佳准确性和速度方面的模型设计权衡。深度学习为我们提供了从大型手术场景环境和这些仪器在真实场景中的放置中学习复杂环境的机会。2019 年稳健医学仪器分割挑战赛(ROBUST-MIS)提供了超过 10000 个带有不同临床环境下手术工具的帧。在本文中,我们提出了一个轻量级的单阶段实例分割模型,并辅以卷积块注意力模块,以实现更快和更准确的推断。我们通过数据增强和最佳锚定定位策略进一步提高了准确性。据我们所知,这是第一份明确关注实时性能和提高准确性的工作。我们的方法在最近的 ROBUST-MIS 挑战赛中超越了顶尖团队的表现,基于区域的多实例 dice 度量 MI_DSC 提高了 44%,基于距离的多实例归一化表面 dice 提高了 39%。我们还展示了不同但具有竞争力的最终方法变体的实时性能(>60 帧/秒)。