Suppr超能文献

基于雷达通道扩展和双CBAM-FPN的相机-雷达融合目标检测

Camera-Radar Fusion with Radar Channel Extension and Dual-CBAM-FPN for Object Detection.

作者信息

Sun Xiyan, Jiang Yaoyu, Qin Hongmei, Li Jingjing, Ji Yuanfa

机构信息

Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China.

Information and Communication School, Guilin University of Electronic Technology, Guilin 541004, China.

出版信息

Sensors (Basel). 2024 Aug 16;24(16):5317. doi: 10.3390/s24165317.

Abstract

When it comes to road environment perception, millimeter-wave radar with a camera facilitates more reliable detection than a single sensor. However, the limited utilization of radar features and insufficient extraction of important features remain pertinent issues, especially with regard to the detection of small and occluded objects. To address these concerns, we propose a camera-radar fusion with radar channel extension and a dual-CBAM-FPN (CRFRD), which incorporates a radar channel extension (RCE) module and a dual-CBAM-FPN (DCF) module into the camera-radar fusion net (CRF-Net). In the RCE module, we design an azimuth-weighted RCS parameter and extend three radar channels, which leverage the secondary redundant information to achieve richer feature representation. In the DCF module, we present the dual-CBAM-FPN, which enables the model to focus on important features by inserting CBAM at the input and the fusion process of FPN simultaneously. Comparative experiments conducted on the NuScenes dataset and real data demonstrate the superior performance of the CRFRD compared to CRF-Net, as its weighted mean average precision (wmAP) increases from 43.89% to 45.03%. Furthermore, ablation studies verify the indispensability of the RCE and DCF modules and the effectiveness of azimuth-weighted RCS.

摘要

在道路环境感知方面,毫米波雷达与摄像头相结合比单一传感器能实现更可靠的检测。然而,雷达特征利用有限以及重要特征提取不足仍是相关问题,特别是在检测小目标和被遮挡目标方面。为解决这些问题,我们提出一种带有雷达通道扩展和双CBAM-FPN的摄像头-雷达融合方法(CRFRD),它将雷达通道扩展(RCE)模块和双CBAM-FPN(DCF)模块整合到摄像头-雷达融合网络(CRF-Net)中。在RCE模块中,我们设计了方位加权RCS参数并扩展了三个雷达通道,利用二次冗余信息实现更丰富的特征表示。在DCF模块中,我们提出了双CBAM-FPN,通过在FPN的输入和融合过程中同时插入CBAM,使模型能够专注于重要特征。在NuScenes数据集和真实数据上进行的对比实验表明,与CRF-Net相比,CRFRD具有卓越性能,其加权平均精度(wmAP)从43.89%提高到了45.03%。此外,消融研究验证了RCE和DCF模块的不可或缺性以及方位加权RCS的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验