Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
J Biomed Inform. 2022 Sep;133:104164. doi: 10.1016/j.jbi.2022.104164. Epub 2022 Aug 17.
Combination pharmacotherapy targets key disease pathways in a synergistic or additive manner and has high potential in treating complex diseases. Computational methods have been developed to identifying combination pharmacotherapy by analyzing large amounts of biomedical data. Existing computational approaches are often underpowered due to their reliance on our limited understanding of disease mechanisms. On the other hand, observable phenotypic inter-relationships among thousands of diseases often reflect their underlying shared genetic and molecular underpinnings, therefore can offer unique opportunities to design computational models to discover novel combinational therapies by automatically transferring knowledge among phenotypically related diseases. We developed a novel phenome-driven drug discovery system, named TuSDC, which leverages knowledge of existing drug combinations, disease comorbidities, and disease treatments of thousands of disease and drug entities extracted from over 31.5 million biomedical research articles using natural language processing techniques. TuSDC predicts combination pharmacotherapy by extracting representations of diseases and drugs using tensor factorization approaches. In external validation, TuSDC achieved an average precision of 0.77 for top ranked candidates, outperforming a state of art mechanism-based method for discovering drug combinations in treating hypertension. We evaluated top ranked anti-hypertension drug combinations using electronic health records of 84.7 million unique patients and showed that a novel drug combination hydrochlorothiazide-digoxin was associated with significantly lower hazards of subsequent hypertension as compared to the monotherapy hydrochlorothiazide alone (HR: 0.769, 95% CI [0.732, 0.807]) and digoxin alone (0.857, 95% CI [0.785, 0.936]). Data-driven informatics analyses reveal that the renin-angiotensin system is involved in the synergistical interactions of hydrochlorothiazide and digoxin on regulating hypertension. The prediction model's code with PyTorch version 1.5 is available at http://nlp.case.edu/public/data/TuSDC/.
联合药物治疗以协同或累加的方式靶向关键疾病途径,在治疗复杂疾病方面具有很大的潜力。已经开发了计算方法来通过分析大量生物医学数据来识别联合药物治疗。现有的计算方法由于依赖于我们对疾病机制的有限理解,因此往往功能不足。另一方面,数千种疾病之间可观察到的表型相互关系通常反映了它们潜在的共同遗传和分子基础,因此为设计计算模型提供了独特的机会,通过在表型相关疾病之间自动转移知识来发现新的组合疗法。我们开发了一种新的表型驱动的药物发现系统,称为 TuSDC,该系统利用了从超过 3150 万篇生物医学研究文章中使用自然语言处理技术提取的数千种疾病和药物实体的现有药物组合、疾病共病和疾病治疗的知识。TuSDC 通过使用张量分解方法提取疾病和药物的表示来预测联合药物治疗。在外部验证中,TuSDC 为排名靠前的候选药物实现了 0.77 的平均精度,优于一种用于治疗高血压的基于机制的药物组合发现的最先进方法。我们使用 8470 万独特患者的电子健康记录评估了排名靠前的抗高血压药物组合,并表明与单独使用氢氯噻嗪(HR:0.769,95%CI [0.732,0.807])和单独使用地高辛(0.857,95%CI [0.785,0.936])相比,氢氯噻嗪-地高辛的新型药物组合与随后发生高血压的风险显著降低相关。基于数据的信息学分析表明,血管紧张素系统参与了氢氯噻嗪和地高辛调节高血压的协同相互作用。预测模型的 PyTorch 版本 1.5 代码可在 http://nlp.case.edu/public/data/TuSDC/ 获得。