Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
Bioinformatics. 2020 Jul 1;36(Suppl_1):i436-i444. doi: 10.1093/bioinformatics/btaa451.
Predicting drug-target interactions (DTIs) using human phenotypic data have the potential in eliminating the translational gap between animal experiments and clinical outcomes in humans. One challenge in human phenome-driven DTI predictions is integrating and modeling diverse drug and disease phenotypic relationships. Leveraging large amounts of clinical observed phenotypes of drugs and diseases and electronic health records (EHRs) of 72 million patients, we developed a novel integrated computational drug discovery approach by seamlessly combining DTI prediction and clinical corroboration.
We developed a network-based DTI prediction system (TargetPredict) by modeling 855 904 phenotypic and genetic relationships among 1430 drugs, 4251 side effects, 1059 diseases and 17 860 genes. We systematically evaluated TargetPredict in de novo cross-validation and compared it to a state-of-the-art phenome-driven DTI prediction approach. We applied TargetPredict in identifying novel repositioned candidate drugs for Alzheimer's disease (AD), a disease affecting over 5.8 million people in the United States. We evaluated the clinical efficiency of top repositioned drug candidates using EHRs of over 72 million patients. The area under the receiver operating characteristic (ROC) curve was 0.97 in the de novo cross-validation when evaluated using 910 drugs. TargetPredict outperformed a state-of-the-art phenome-driven DTI prediction system as measured by precision-recall curves [measured by average precision (MAP): 0.28 versus 0.23, P-value < 0.0001]. The EHR-based case-control studies identified that the prescriptions top-ranked repositioned drugs are significantly associated with lower odds of AD diagnosis. For example, we showed that the prescription of liraglutide, a type 2 diabetes drug, is significantly associated with decreased risk of AD diagnosis [adjusted odds ratios (AORs): 0.76; 95% confidence intervals (CI) (0.70, 0.82), P-value < 0.0001]. In summary, our integrated approach that seamlessly combines computational DTI prediction and large-scale patients' EHRs-based clinical corroboration has high potential in rapidly identifying novel drug targets and drug candidates for complex diseases.
nlp.case.edu/public/data/TargetPredict.
使用人体表型数据预测药物-靶标相互作用(DTI)有可能消除动物实验与人体临床结果之间的转化差距。在基于人体表型的 DTI 预测中,一个挑战是整合和建模多样化的药物和疾病表型关系。利用大量的药物和疾病临床观察表型以及 7200 万患者的电子健康记录(EHR),我们通过无缝结合 DTI 预测和临床验证,开发了一种新的集成计算药物发现方法。
我们通过对 1430 种药物、4251 种副作用、1059 种疾病和 17860 种基因之间的 855904 种表型和遗传关系进行建模,开发了一种基于网络的 DTI 预测系统(TargetPredict)。我们在全新的交叉验证中系统地评估了 TargetPredict,并将其与最先进的基于表型的 DTI 预测方法进行了比较。我们将 TargetPredict 应用于识别阿尔茨海默病(AD)的新型重定位候选药物,AD 是一种影响美国超过 580 万人的疾病。我们使用超过 7200 万患者的 EHR 评估了顶级重定位药物候选物的临床效果。在使用 910 种药物进行评估时,在全新的交叉验证中,接收器操作特征(ROC)曲线下的面积为 0.97。TargetPredict 在精度-召回曲线方面优于最先进的基于表型的 DTI 预测系统[平均精度(MAP)衡量:0.28 对 0.23,P 值<0.0001]。基于 EHR 的病例对照研究表明,处方中排名最高的重定位药物与 AD 诊断的几率降低显著相关。例如,我们表明,2 型糖尿病药物利拉鲁肽的处方与 AD 诊断风险降低显著相关[调整后的优势比(AOR):0.76;95%置信区间(CI)(0.70,0.82),P 值<0.0001]。总之,我们的方法将计算 DTI 预测和基于大型患者 EHR 的临床验证无缝结合,具有快速识别复杂疾病新药物靶点和候选药物的巨大潜力。
nlp.case.edu/public/data/TargetPredict。