Department of Plant Sciences, University of Cambridge, Cambridge, UK.
Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Bielefeld, Germany.
BMC Genomics. 2022 Aug 19;23(1):604. doi: 10.1186/s12864-022-08819-8.
Flavonols are the largest subgroup of flavonoids, possessing multiple functions in plants including protection against ultraviolet radiation, antimicrobial activities, and flower pigmentation together with anthocyanins. They are of agronomical and economical importance because the major off-taste component in rapeseed protein isolates is a flavonol derivative, which limits rapeseed protein use for human consumption. Flavonol production in Arabidopsis thaliana is mainly regulated by the subgroup 7 (SG7) R2R3-MYB transcription factors MYB11, MYB12, and MYB111. Recently, the SG19 MYBs MYB21, MYB24, and MYB57 were shown to regulate flavonol accumulation in pollen and stamens. The members of each subgroup are closely related, showing gene redundancy and tissue-specific expression in A. thaliana. However, the evolution of these flavonol regulators inside the Brassicaceae, especially inside the Brassiceae, which include the rapeseed crop species, is not fully understood.
We studied the SG7 and SG19 MYBs in 44 species, including 31 species of the Brassicaceae, by phylogenetic analyses followed by synteny and gene expression analyses. Thereby we identified a deep MYB12 and MYB111 duplication inside the Brassicaceae, which likely occurred before the divergence of Brassiceae and Thelypodieae. These duplications of SG7 members were followed by the loss of MYB11 after the divergence of Eruca vesicaria from the remaining Brassiceae species. Similarly, MYB21 experienced duplication before the emergence of the Brassiceae tribe, where the gene loss of MYB24 is also proposed to have happened. The members of each subgroup revealed frequent overlapping spatio-temporal expression patterns in the Brassiceae member B. napus, which are assumed to compensate for the loss of MYB11 and MYB24 in the analysed tissues.
We identified a duplication of MYB12, MYB111, and MYB21 inside the Brassicaceae and MYB11 and MYB24 gene loss inside the tribe Brassiceae. We propose that polyploidization events have shaped the evolution of the flavonol regulators in the Brassicaceae, especially in the Brassiceae.
类黄酮是黄酮类化合物中最大的亚群,在植物中具有多种功能,包括抵御紫外线辐射、抗菌活性、与花色苷一起的花色素沉着,以及类黄酮。它们具有农业和经济重要性,因为油菜籽蛋白分离物中的主要异味成分是类黄酮衍生物,这限制了油菜籽蛋白用于人类食用。拟南芥中类黄酮的产生主要由亚群 7(SG7)R2R3-MYB 转录因子 MYB11、MYB12 和 MYB111 调节。最近,SG19 MYBs MYB21、MYB24 和 MYB57 被证明在花粉和雄蕊中调节类黄酮的积累。每个亚群的成员都密切相关,在拟南芥中表现出基因冗余和组织特异性表达。然而,这些类黄酮调节剂在十字花科中的进化,特别是在包括油菜作物在内的芸薹属中的进化,还不完全清楚。
我们通过系统发育分析以及共线性和基因表达分析,研究了 44 种物种中的 SG7 和 SG19 MYBs,包括 31 种十字花科物种。由此,我们在十字花科中鉴定出了 SG7 成员的 MYB12 和 MYB111 深度复制,这可能发生在芸薹属和 Thelypodieae 分化之前。这些 SG7 成员的复制之后,Eruca vesicaria 与其余芸薹属物种分化后,MYB11 丢失。同样,MYB21 在 Brassiceae 部落出现之前经历了复制,也提出了 MYB24 的基因丢失。每个亚群的成员在 Brassiceae 成员 Brassica napus 中表现出频繁的重叠时空表达模式,假设这些模式可以补偿分析组织中 MYB11 和 MYB24 的缺失。
我们在十字花科中鉴定出 MYB12、MYB111 和 MYB21 的复制,在 Brassiceae 部落中鉴定出 MYB11 和 MYB24 的基因丢失。我们提出,多倍化事件塑造了黄酮类化合物调节剂在十字花科中的进化,特别是在芸薹属中。