Suppr超能文献

基于机器学习利用步态参数对社区居住老年人肌肉量进行估计的横断面研究。

Machine learning-based muscle mass estimation using gait parameters in community-dwelling older adults: A cross-sectional study.

作者信息

Fujita Kosuke, Hiyama Takahiro, Wada Kengo, Aihara Takahiro, Matsumura Yoshihiro, Hamatsuka Taichi, Yoshinaka Yasuko, Kimura Misaka, Kuzuya Masafumi

机构信息

Department of Community Healthcare and Geriatrics, Graduate School of Medicine, Nagoya University, Nagoya, Japan; Department of Prevention and Care Science, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan.

Technology Division, Panasonic Holdings Corporation, Kadoma, Japan.

出版信息

Arch Gerontol Geriatr. 2022 Nov-Dec;103:104793. doi: 10.1016/j.archger.2022.104793. Epub 2022 Aug 14.

Abstract

BACKGROUND

Loss of skeletal muscle mass is associated with numerous factors such as metabolic diseases, lack of independence, and mortality in older adults. Therefore, developing simple, safe, and reliable tools for assessing skeletal muscle mass is needed. Some studies recently reported that the risks of the incidence of geriatric conditions could be estimated by analyzing older adults' gait; however, no studies have assessed the association between gait parameters and skeletal muscle loss in older adults. In this study, we applied machine learning approach to the gait parameters derived from three-dimensional skeletal models to distinguish older adults' low skeletal muscle mass. We also identified the most important gait parameters for detecting low muscle mass.

METHODS

Sixty-six community-dwelling older adults were recruited. Thirty-two gait parameters were created using a three-dimensional skeletal model involving 10-meter comfortable walking. After skeletal muscle mass measurement using a bioimpedance analyzer, low muscle mass was judged in accordance with the guideline of the Asia Working Group for Sarcopenia. The eXtreme gradient boosting (XGBoost) model was applied to discriminate between low and high skeletal muscle mass.

RESULTS

Eleven subjects had a low muscle mass. The c-statistics, sensitivity, specificity, precision of the final model were 0.7, 59.5%, 81.4%, and 70.5%, respectively. The top three dominant gait parameters were, in order of strongest effect, stride length, hip dynamic range of motion, and trunk rotation variability.

CONCLUSION

Machine learning-based gait analysis is a useful approach to determine the low skeletal muscle mass of community-dwelling older adults.

摘要

背景

骨骼肌质量的丧失与多种因素相关,如代谢性疾病、缺乏独立性以及老年人的死亡率。因此,需要开发简单、安全且可靠的骨骼肌质量评估工具。最近一些研究报告称,通过分析老年人的步态可以估计老年疾病发生的风险;然而,尚无研究评估老年人步态参数与骨骼肌量减少之间的关联。在本研究中,我们将机器学习方法应用于从三维骨骼模型得出的步态参数,以区分老年人的低骨骼肌质量。我们还确定了检测低肌肉量最重要的步态参数。

方法

招募了66名社区居住的老年人。使用包含10米舒适步行的三维骨骼模型创建了32个步态参数。在使用生物电阻抗分析仪测量骨骼肌质量后,根据亚洲肌少症工作组的指南判断低肌肉量。应用极端梯度提升(XGBoost)模型区分低和高骨骼肌质量。

结果

11名受试者肌肉量低。最终模型的c统计量、敏感性、特异性、精确度分别为0.7、59.5%、81.4%和70.5%。按影响强度排序,前三个主要步态参数是步长、髋关节动态运动范围和躯干旋转变异性。

结论

基于机器学习的步态分析是确定社区居住老年人低骨骼肌质量的一种有用方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验