School of Environmemtal Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
School of Environmemtal Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
Chemosphere. 2022 Nov;307(Pt 3):136074. doi: 10.1016/j.chemosphere.2022.136074. Epub 2022 Aug 17.
Fe/Mn@carbon cloth (CC) was successfully fabricated through high-temperature shock (HTS) technique and used as cathode modification in heterogeneous electro-Fenton (hetero-EF) process for methylisothiazolinone (MIT) degradation. The nanocrystalline on Fe/Mn@CC electrode is doped with Fe and Mn oxides and coated with carbon layer, which could markedly enhance the electrocatalysis with high electro-chemical active area and low resistance. Fe/Mn@CC modified cathode can efficiently in-situ produce and activate HO, showing high electrocatalytic activity to MIT degradation. The 95.2% MIT degradation with in 100 min were achieved under the condition of 30 mA current, 0.75 L min aeration intensity and initial pH = 3. Based on the CV curves and stability test, the high degradation activity revealed the kinetically beneficial regeneration of Fe/Mn in Fe/Mn@CC and activation of HO. The electron transfer between Fe and Mn, together with the direct Fe/Mn regeneration on the cathode, could markedly promote the HO utilization, and eventually lead to MIT degradation.
Fe/Mn@碳纤维布(CC)通过高温冲击(HTS)技术成功制备,并作为非均相电芬顿(hetero-EF)过程中的阴极修饰剂,用于降解甲基异噻唑啉酮(MIT)。Fe/Mn@CC 电极上的纳米晶掺杂有 Fe 和 Mn 氧化物,并涂覆有碳层,这可以显著提高电催化性能,具有高电化学活性面积和低电阻。Fe/Mn@CC 修饰阴极可以有效地原位产生和激活 HO,并对 MIT 降解表现出高电催化活性。在电流为 30 mA、通气强度为 0.75 L/min 和初始 pH=3 的条件下,仅需 100 min 即可实现 95.2%的 MIT 降解。基于 CV 曲线和稳定性测试,高降解活性表明 Fe/Mn 在 Fe/Mn@CC 中的动力学有利再生和 HO 的激活。Fe 和 Mn 之间的电子转移以及阴极上的直接 Fe/Mn 再生可以显著促进 HO 的利用,最终导致 MIT 降解。