Suppr超能文献

发现一种参与葡萄球菌硫氨基酸代谢的 l-氨基酸连接酶。

Discovery of an ʟ-amino acid ligase implicated in Staphylococcal sulfur amino acid metabolism.

机构信息

Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.

Institute for Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia, Australia.

出版信息

J Biol Chem. 2022 Oct;298(10):102392. doi: 10.1016/j.jbc.2022.102392. Epub 2022 Aug 19.

Abstract

Enzymes involved in Staphylococcus aureus amino acid metabolism have recently gained traction as promising targets for the development of new antibiotics, however, not all aspects of this process are understood. The ATP-grasp superfamily includes enzymes that predominantly catalyze the ATP-dependent ligation of various carboxylate and amine substrates. One subset, ʟ-amino acid ligases (LALs), primarily catalyze the formation of dipeptide products in Gram-positive bacteria, however, their involvement in S. aureus amino acid metabolism has not been investigated. Here, we present the characterization of the putative ATP-grasp enzyme (SAOUHSC_02373) from S. aureus NCTC 8325 and its identification as a novel LAL. First, we interrogated the activity of SAOUHSC_02373 against a panel of ʟ-amino acid substrates. As a result, we identified SAOUHSC_02373 as an LAL with high selectivity for ʟ-aspartate and ʟ-methionine substrates, specifically forming an ʟ-aspartyl-ʟ-methionine dipeptide. Thus, we propose that SAOUHSC_02373 be assigned as ʟ-aspartate-ʟ-methionine ligase (LdmS). To further understand this unique activity, we investigated the mechanism of LdmS by X-ray crystallography, molecular modeling, and site-directed mutagenesis. Our results suggest that LdmS shares a similar mechanism to other ATP-grasp enzymes but possesses a distinctive active site architecture that confers selectivity for the ʟ-Asp and ʟ-Met substrates. Phylogenetic analysis revealed LdmS homologs are highly conserved in Staphylococcus and closely related Gram-positive Firmicutes. Subsequent genetic analysis upstream of the ldmS operon revealed several trans-acting regulatory elements associated with control of Met and Cys metabolism. Together, these findings support a role for LdmS in Staphylococcal sulfur amino acid metabolism.

摘要

金黄色葡萄球菌氨基酸代谢中的酶最近作为开发新抗生素的有前途的靶点引起了关注,然而,这一过程的所有方面并不完全清楚。ATP 抓取超家族包括主要催化各种羧酸盐和胺底物的 ATP 依赖性连接的酶。其中一组,L-氨基酸连接酶(LALs),主要催化革兰氏阳性菌中二肽产物的形成,然而,它们在金黄色葡萄球菌氨基酸代谢中的参与尚未被研究。在这里,我们介绍了来自金黄色葡萄球菌 NCTC 8325 的假定 ATP 抓取酶(SAOUHSC_02373)的特征及其作为新型 LAL 的鉴定。首先,我们用一组 L-氨基酸底物检测了 SAOUHSC_02373 的活性。结果,我们确定 SAOUHSC_02373 是一种对 L-天冬氨酸和 L-蛋氨酸底物具有高选择性的 LAL,特别形成 L-天冬酰-L-蛋氨酸二肽。因此,我们建议将 SAOUHSC_02373 指定为 L-天冬氨酸-L-蛋氨酸连接酶(LdmS)。为了进一步了解这种独特的活性,我们通过 X 射线晶体学、分子建模和定点突变研究了 LdmS 的机制。我们的结果表明,LdmS 与其他 ATP 抓取酶具有相似的机制,但具有独特的活性位点结构,赋予其对 L-Asp 和 L-Met 底物的选择性。系统发育分析表明,LdmS 同源物在葡萄球菌和密切相关的革兰氏阳性厚壁菌中高度保守。随后在 ldmS 操纵子上游的遗传分析揭示了几个与 Met 和 Cys 代谢控制相关的反式作用调节元件。总之,这些发现支持 LdmS 在葡萄球菌硫氨基酸代谢中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b411/9486568/18224e5cb4c8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验