Williams Tremaine B, Garza Maryam, Lipchitz Riley, Powell Thomas, Baghal Ahmad, Swindle Taren, Sexton Kevin Wayne
Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
J Multimorb Comorb. 2022 Aug 17;12:26335565221122017. doi: 10.1177/26335565221122017. eCollection 2022 Jan-Dec.
The aim of this study was to characterize patterns of multimorbidity across patients and identify opportunities to strengthen the informatics capacity of learning health systems that are used to characterize multimorbidity across patients.
Electronic health record (EHR) data on 225,710 multimorbidity patients were extracted from the Arkansas Clinical Data Repository as a use case. Hierarchical cluster analysis identified the most frequently occurring combinations of chronic conditions within the learning health system's captured data.
Results revealed multimorbidity was highest among patients ages 60 to 74, Caucasians, females, and Medicare payors. The largest numbers of chronic conditions occurred in the smallest numbers of patients (i.e., 70,262 (31%) patients with two conditions, two (<1%) patients with 22 chronic conditions). The results revealed urgent needs to improve EHR systems and processes that collect and manage multimorbidity data (e.g., creating new, multimorbidity-centric data elements in EHR systems, detailed longitudinal tracking of compounding disease diagnoses).
Without additional capacity to collect and aggregate large-scale data, multimorbidity patients cannot benefit from the recent advancements in informatics (i.e., clinical data registries, emerging data standards) that are abundantly working to improve the outcomes of patients with single chronic conditions. Additionally, robust socio-technical system studies of clinical workflows are needed to assess the feasibility of integrating the collection of risk factor data elements (i.e., psycho-social, cultural, ethnic, and socioeconomic attributes of populations) into primary care encounters. These approaches to advancing learning health systems for multimorbidity could substantially reduce the constraints of current technologies, data, and data-capturing processes.
本研究的目的是描述患者的共病模式,并确定加强学习型健康系统信息学能力的机会,这些系统用于描述患者的共病情况。
从阿肯色州临床数据存储库中提取了225,710名共病患者的电子健康记录(EHR)数据作为一个用例。分层聚类分析确定了学习型健康系统所捕获数据中最常出现的慢性病组合。
结果显示,60至74岁的患者、白种人、女性和医疗保险支付者的共病率最高。慢性病数量最多的情况出现在患者数量最少的群体中(即70,262名(31%)患有两种疾病的患者,两名(<1%)患有22种慢性病的患者)。结果表明迫切需要改进收集和管理共病数据的电子健康记录系统和流程(例如,在电子健康记录系统中创建新的、以共病为中心的数据元素,对复合疾病诊断进行详细的纵向跟踪)。
如果没有额外的能力来收集和汇总大规模数据,共病患者就无法从信息学的最新进展(即临床数据登记、新兴数据标准)中受益,这些进展正大量致力于改善单一慢性病患者的治疗效果。此外,还需要对临床工作流程进行强大的社会技术系统研究,以评估将风险因素数据元素(即人群的心理社会、文化、种族和社会经济属性)的收集整合到初级保健诊疗中的可行性。这些推进共病学习型健康系统的方法可以大幅减少当前技术、数据和数据捕获过程的限制。