Suppr超能文献

环己烯高温自燃的实验与动力学建模研究

Experimental and Kinetic Modeling Study on High-Temperature Autoignition of Cyclohexene.

作者信息

Liang Jinhu, Li Fei, Cao Shutong, Li Xiaoliang, He Ruining, Jia Ming-Xu, Wang Quan-De

机构信息

School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, People's Republic of China.

Jiangsu Key Laboratory of Coal-Based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute and School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, People's Republic of China.

出版信息

ACS Omega. 2022 Aug 5;7(32):28118-28128. doi: 10.1021/acsomega.2c02229. eCollection 2022 Aug 16.

Abstract

Cyclohexene is an important intermediate during the oxidation of cycloalkanes, which comprise a significant portion of real fuels. Thus, experimental data sets and kinetic models of cyclohexene play an important role in the understanding of the combustion of cycloalkanes and real fuels. In this work, an experimental and kinetic modeling study of the high-temperature ignition of cyclohexene is performed. Ignition delay time (IDT) measurements are carried out in a high-pressure shock tube (HPST). The studied pressures are 5, 10, and 20 bar; the equivalence ratios are 0.5, 1.0, and 2.0; and the temperatures range from 980 to 1400 K for IDT in HPST. It is shown that the IDTs of cyclohexene exhibit Arrhenius behaviors as a function of temperature, and the IDTs decrease as the equivalence ratio and pressure increase. The experimental results are simulated using three previous detailed kinetic mechanisms and an updated detailed mechanism in this work. The updated detailed kinetic mechanism exhibits good agreement with experimental results. Reaction path analysis and sensitivity analysis are performed to provide insights into the chemical kinetics controlling the ignition of cyclohexene. The results demonstrate that different detailed kinetic mechanisms are significantly different, and there are still no unified conclusions about the major reaction path for cyclohexene oxidation. However, it is worth noting that the abstraction reaction by oxygen at the allylic site and the submechanism of cyclopentene are of significant importance for the accurate prediction of IDTs of cyclohexene. The present experimental data set and kinetic model should be valuable to improve our understanding of the combustion chemistry of cycloalkanes.

摘要

环己烯是环烷烃氧化过程中的重要中间体,环烷烃在实际燃料中占很大比例。因此,环己烯的实验数据集和动力学模型对于理解环烷烃和实际燃料的燃烧起着重要作用。在这项工作中,对环己烯的高温点火进行了实验和动力学建模研究。在高压激波管(HPST)中进行点火延迟时间(IDT)测量。研究的压力为5、10和20巴;当量比为0.5、1.0和2.0;对于HPST中的IDT,温度范围为980至1400K。结果表明,环己烯的IDT表现出随温度变化的阿累尼乌斯行为,并且IDT随着当量比和压力的增加而减小。使用之前的三种详细动力学机制和本文更新的详细机制对实验结果进行了模拟。更新后的详细动力学机制与实验结果吻合良好。进行了反应路径分析和敏感性分析,以深入了解控制环己烯点火的化学动力学。结果表明,不同的详细动力学机制存在显著差异,对于环己烯氧化的主要反应路径仍没有统一的结论。然而,值得注意的是,烯丙基位点的氧提取反应和环戊烯子机制对于准确预测环己烯的IDT非常重要。目前的实验数据集和动力学模型对于增进我们对环烷烃燃烧化学的理解应该是有价值的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验