Suppr超能文献

调整线量子传感以改进森林中叶面积指数的测量与估算

Adjusting line quantum sensing to improve leaf area index measurements and estimations in forests.

作者信息

Battuvshin Guyen, Menzel Lucas

机构信息

Hydrology and Climatology, Institute of Geography, Heidelberg University, Germany.

出版信息

MethodsX. 2022 Jul 30;9:101805. doi: 10.1016/j.mex.2022.101805. eCollection 2022.

Abstract

Rapid and reliable estimation of leaf area index (LAI), a crucial parameter in process-based models of vegetation cover response, is important in ecological studies. The Beer-Lambert law is widely used to calculate forest LAI, but data collection methods are time-consuming and calculations are often inaccurate. Our objective was to improve the accuracy of Beer-Lambert law-based LAI estimation by employing indirect data collection and location-specific light extinction coefficients (). Canopy transmittance and LAI of two 100 m temperate forest stands in southwestern Germany, one managed and one protected, was estimated using line quantum sensing (LQS) at 45,000 points per stand. The Beer-Lambert law was then inverted to estimate LAI using the measured transmittance with a of 0.53-0.54. Hemispherical reference photographs were used as independent validation data to determine ideal values. Experimental data demonstrated that LAI values estimated using LQS with adjusted values were more accurate than those calculated using the basic application of the Beer-Lambert law. LQS results correlated with those determined using hemispherical photography for both the managed (R² = 0.80) and protected (R² = 0.81) stands. Overall, these findings show that adjusting values for individual forest systems improves the accuracy of LAI estimation.•The modified method is more accurate than that using fixed ranges.•The modified method accounts for individual ecosystems, with different values for different environments.•The method can accurately reflect the dynamic changes of forest canopy structure, allowing integration of additional environmental measurements.

摘要

叶面积指数(LAI)是植被覆盖响应过程模型中的一个关键参数,对其进行快速可靠的估算在生态学研究中具有重要意义。比尔-朗伯定律被广泛用于计算森林叶面积指数,但数据收集方法耗时且计算结果往往不准确。我们的目标是通过采用间接数据收集和特定地点的光消光系数()来提高基于比尔-朗伯定律的叶面积指数估算的准确性。在德国西南部两个100米长的温带森林林分中,一个是经营林分,一个是保护林分,利用线量子传感(LQS)在每个林分的45000个点上估算冠层透过率和叶面积指数。然后利用测得的透过率,通过比尔-朗伯定律反演来估算叶面积指数,光消光系数为0.53 - 0.54。使用半球形参考照片作为独立验证数据来确定理想的光消光系数值。实验数据表明,使用经过调整的光消光系数值的线量子传感估算的叶面积指数值比使用比尔-朗伯定律基本应用计算的结果更准确。对于经营林分(R² = 0.80)和保护林分(R² = 0.81),线量子传感结果与使用半球形摄影确定的结果均具有相关性。总体而言,这些发现表明,针对单个森林系统调整光消光系数值可提高叶面积指数估算的准确性。

•改进后的方法比使用固定光消光系数范围的方法更准确。

•改进后的方法考虑了单个生态系统,不同环境具有不同的光消光系数值。

•该方法能够准确反映森林冠层结构的动态变化,允许整合额外的环境测量数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/691e/9382334/4d8f59220001/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验