Shi Zixi, Shi Shuo, Gong Wei, Xu Lu, Wang Binhui, Sun Jia, Chen Bowen, Xu Qian
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei, China.
State Key Laboratory of Geo-Information Engineering, Xi'an, Shaanxi, China.
Front Plant Sci. 2023 Sep 29;14:1237988. doi: 10.3389/fpls.2023.1237988. eCollection 2023.
Leaf area index (LAI) is an important biophysical parameter of vegetation and serves as a significant indicator for assessing forest ecosystems. Multi-source remote sensing data enables large-scale and dynamic surface observations, providing effective data for quantifying various indices in forest and evaluating ecosystem changes. However, employing single-source remote sensing spectral or LiDAR waveform data poses limitations for LAI inversion, making the integration of multi-source remote sensing data a trend. Currently, the fusion of active and passive remote sensing data for LAI inversion primarily relies on empirical models, which are mainly constructed based on field measurements and do not provide a good explanation of the fusion mechanism. In this study, we aimed to estimate LAI based on physical model using both spectral imagery and LiDAR waveform, exploring whether data fusion improved the accuracy of LAI inversion. Specifically, based on the physical model geometric-optical and radiative transfer (GORT), a fusion strategy was designed for LAI inversion. To ensure inversion accuracy, we enhanced the data processing by introducing a constraint-based EM waveform decomposition method. Considering the spatial heterogeneity of canopy/ground reflectivity ratio in regional forests, calculation strategy was proposed to improve this parameter in inversion model. The results showed that the constraint-based EM waveform decomposition method improved the decomposition accuracy with an average 12% reduction in RMSE, yielding more accurate waveform energy parameters. The proposed calculation strategy for the canopy/ground reflectivity ratio, considering dynamic variation of parameter, effectively enhanced previous research that relied on a fixed value, thereby improving the inversion accuracy that increasing on the correlation by 5% to 10% and on R by 62.5% to 132.1%. Based on the inversion strategy we proposed, data fusion could effectively be used for LAI inversion. The inversion accuracy achieved using both spectral and LiDAR data (correlation=0.81, R0.65, RMSE=1.01) surpassed that of using spectral data or LiDAR alone. This study provides a new inversion strategy for large-scale and high-precision LAI inversion, supporting the field of LAI research.
叶面积指数(LAI)是植被的一个重要生物物理参数,是评估森林生态系统的重要指标。多源遥感数据能够进行大规模动态地表观测,为量化森林中的各种指数和评估生态系统变化提供有效数据。然而,采用单源遥感光谱或激光雷达波形数据进行LAI反演存在局限性,使得多源遥感数据融合成为一种趋势。目前,用于LAI反演的主动和被动遥感数据融合主要依赖经验模型,这些模型主要基于实地测量构建,没有很好地解释融合机制。在本研究中,我们旨在利用光谱图像和激光雷达波形,基于物理模型估计LAI,探索数据融合是否提高了LAI反演的准确性。具体而言,基于物理模型几何光学和辐射传输(GORT),设计了一种用于LAI反演的融合策略。为确保反演精度,我们通过引入基于约束的EM波形分解方法来加强数据处理。考虑到区域森林中冠层/地面反射率比的空间异质性,提出了计算策略以改进反演模型中的该参数。结果表明,基于约束的EM波形分解方法提高了分解精度,RMSE平均降低了12%,产生了更准确的波形能量参数。所提出的冠层/地面反射率比计算策略考虑了参数的动态变化,有效改进了以往依赖固定值的研究,从而提高了反演精度,相关性提高了5%至10%,R提高了62.5%至132.1%。基于我们提出的反演策略,数据融合可有效用于LAI反演。使用光谱和激光雷达数据实现的反演精度(相关性 = 0.81,R = 0.65,RMSE = 1.01)超过了单独使用光谱数据或激光雷达数据的精度。本研究为大规模高精度LAI反演提供了一种新的反演策略,为LAI研究领域提供了支持。