Suppr超能文献

TDP-43 突变型 ALS 小鼠中枢神经系统中应激颗粒的体内组装存在缺陷。

Stress granule assembly in vivo is deficient in the CNS of mutant TDP-43 ALS mice.

机构信息

Department of Neuroscience, Université de Montréal, Montréal, Québec H3T 1J4, Canada.

Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada.

出版信息

Hum Mol Genet. 2023 Jan 6;32(2):319-332. doi: 10.1093/hmg/ddac206.

Abstract

Responding effectively to external stress is crucial for neurons. Defective stress granule dynamics has been hypothesized as one of the pathways that renders motor neurons in amyotrophic lateral sclerosis (ALS) more prone to early death. Specifically, it is thought that stress granules seed the cytoplasmic TDP-43 inclusions that are observed in the neurons of most ALS patients, as well as ~50% of all frontotemporal dementia (FTD) patients. In this study, we tested this hypothesis in an intact mammalian nervous system. We established an in vivo heat stress paradigm in mice that effectively triggers the eIF2α pathway and the formation of stress granules in the CNS. In non-transgenic mice, we report an age-dependent decline in the formation of heat-induced stress granules, with 18-month-old animals showing a significant impairment. Furthermore, although neuronal stress granules were robustly observed in non-transgenic mice and SOD1G93A mice, they were largely absent in age-matched TDP-43M337V animals. The observed defect in stress granule formation in TDP-43M337V mice correlated with deficits in expression of key protein components typically required for phase separation. Lastly, while TDP-43 was not localized to stress granules, we observed complete nuclear depletion of TDP-43 in a subset of neurons, with the highest proportion being in the TDP-43M337V mice. Overall, our results indicate that mutant TDP-43 expression is associated with defective stress granule assembly and increased TDP-43 nuclear depletion in the mammalian nervous system, which could be relevant to ALS/FTD pathogenesis.

摘要

有效应对外部压力对神经元至关重要。应激颗粒动力学缺陷被认为是使肌萎缩侧索硬化症(ALS)中的运动神经元更容易早期死亡的途径之一。具体而言,人们认为应激颗粒会引发细胞质 TDP-43 包含物,这些包含物在大多数 ALS 患者的神经元中以及~50%的所有额颞叶痴呆(FTD)患者中都有观察到。在这项研究中,我们在完整的哺乳动物神经系统中测试了这一假说。我们在小鼠中建立了一种体内热应激范例,该范例有效地触发了 eIF2α 途径和中枢神经系统中应激颗粒的形成。在非转基因小鼠中,我们报告了热诱导应激颗粒形成随年龄增长而下降的趋势,18 个月大的动物表现出明显的缺陷。此外,尽管在非转基因小鼠和 SOD1G93A 小鼠中观察到了神经元应激颗粒,但在年龄匹配的 TDP-43M337V 动物中则很少观察到。TDP-43M337V 小鼠中应激颗粒形成缺陷与相分离所需的关键蛋白成分的表达缺陷相关。最后,虽然 TDP-43 未定位于应激颗粒,但我们观察到一部分神经元中的 TDP-43 完全耗尽核,其中 TDP-43M337V 小鼠的比例最高。总体而言,我们的结果表明,突变型 TDP-43 的表达与哺乳动物神经系统中应激颗粒组装缺陷和 TDP-43 核耗竭增加有关,这可能与 ALS/FTD 的发病机制有关。

相似文献

1
Stress granule assembly in vivo is deficient in the CNS of mutant TDP-43 ALS mice.
Hum Mol Genet. 2023 Jan 6;32(2):319-332. doi: 10.1093/hmg/ddac206.
2
TDP-43 stabilizes G3BP1 mRNA: relevance to amyotrophic lateral sclerosis/frontotemporal dementia.
Brain. 2021 Dec 16;144(11):3461-3476. doi: 10.1093/brain/awab217.
4
Sex-Specific Early Retinal Dysfunction in Mutant TDP-43 Transgenic Mice.
J Alzheimers Dis. 2024;97(2):927-937. doi: 10.3233/JAD-231102.
7
Poly(ADP-Ribose) Prevents Pathological Phase Separation of TDP-43 by Promoting Liquid Demixing and Stress Granule Localization.
Mol Cell. 2018 Sep 6;71(5):703-717.e9. doi: 10.1016/j.molcel.2018.07.002. Epub 2018 Aug 9.
8
Small-Molecule Modulation of TDP-43 Recruitment to Stress Granules Prevents Persistent TDP-43 Accumulation in ALS/FTD.
Neuron. 2019 Sep 4;103(5):802-819.e11. doi: 10.1016/j.neuron.2019.05.048. Epub 2019 Jul 1.
9
Targeting 14-3-3θ-mediated TDP-43 pathology in amyotrophic lateral sclerosis and frontotemporal dementia mice.
Neuron. 2024 Apr 17;112(8):1249-1264.e8. doi: 10.1016/j.neuron.2024.01.022. Epub 2024 Feb 15.
10
Cytoplasmic TDP-43 is involved in cell fate during stress recovery.
Hum Mol Genet. 2021 Dec 27;31(2):166-175. doi: 10.1093/hmg/ddab227.

引用本文的文献

1
Stress granules: emerging players in neurodegenerative diseases.
Transl Neurodegener. 2025 May 12;14(1):22. doi: 10.1186/s40035-025-00482-9.
2
Inhibition of SOD1 trimerization is a novel drug target for ALS disease.
Transl Neurodegener. 2025 May 12;14(1):21. doi: 10.1186/s40035-025-00483-8.
3
Challenges of modelling TDP-43 pathology in mice.
Mamm Genome. 2025 Apr 29. doi: 10.1007/s00335-025-10131-1.
4
tRNA synthetase activity is required for stress granule and P-body assembly.
bioRxiv. 2025 Mar 13:2025.03.10.642431. doi: 10.1101/2025.03.10.642431.
5
A stress-dependent TDP-43 SUMOylation program preserves neuronal function.
Mol Neurodegener. 2025 Mar 28;20(1):38. doi: 10.1186/s13024-025-00826-z.
6
Perillaldehyde Improves Parkinson-Like Deficits by Targeting G3BP Mediated Stress Granule Assembly in Preclinical Models.
Adv Sci (Weinh). 2025 Apr;12(14):e2412152. doi: 10.1002/advs.202412152. Epub 2025 Feb 14.
7
TDP-43 nuclear retention is antagonized by hypo-phosphorylation of its C-terminus in the cytoplasm.
Commun Biol. 2025 Jan 28;8(1):136. doi: 10.1038/s42003-025-07456-7.
8
Stress granules and organelles: coordinating cellular responses in health and disease.
Protein Cell. 2025 Jun 20;16(6):418-438. doi: 10.1093/procel/pwae057.
9
Stress granules play a critical role in hexavalent chromium-induced malignancy in a G3BP1 dependent manner.
Environ Pollut. 2024 Dec 1;362:124997. doi: 10.1016/j.envpol.2024.124997. Epub 2024 Sep 19.
10
RNA-binding properties orchestrate TDP-43 homeostasis through condensate formation in vivo.
Nucleic Acids Res. 2024 May 22;52(9):5301-5319. doi: 10.1093/nar/gkae112.

本文引用的文献

1
RNA at the surface of phase-separated condensates impacts their size and number.
Biophys J. 2022 May 3;121(9):1675-1690. doi: 10.1016/j.bpj.2022.03.032. Epub 2022 Mar 29.
3
Image-based deep learning reveals the responses of human motor neurons to stress and VCP-related ALS.
Neuropathol Appl Neurobiol. 2022 Feb;48(2):e12770. doi: 10.1111/nan.12770. Epub 2021 Oct 18.
4
Persistent mRNA localization defects and cell death in ALS neurons caused by transient cellular stress.
Cell Rep. 2021 Sep 7;36(10):109685. doi: 10.1016/j.celrep.2021.109685.
5
TDP-43 stabilizes G3BP1 mRNA: relevance to amyotrophic lateral sclerosis/frontotemporal dementia.
Brain. 2021 Dec 16;144(11):3461-3476. doi: 10.1093/brain/awab217.
6
The Integral Role of RNA in Stress Granule Formation and Function.
Front Cell Dev Biol. 2021 May 20;9:621779. doi: 10.3389/fcell.2021.621779. eCollection 2021.
7
Defining the Caprin-1 Interactome in Unstressed and Stressed Conditions.
J Proteome Res. 2021 Jun 4;20(6):3165-3178. doi: 10.1021/acs.jproteome.1c00016. Epub 2021 May 3.
8
Dr. Jekyll and Mr. Hyde? Physiology and Pathology of Neuronal Stress Granules.
Front Cell Dev Biol. 2021 Feb 25;9:609698. doi: 10.3389/fcell.2021.609698. eCollection 2021.
9
Decoding the physical principles of two-component biomolecular phase separation.
Elife. 2021 Mar 11;10:e62403. doi: 10.7554/eLife.62403.
10
Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation.
Nat Rev Neurosci. 2021 Apr;22(4):197-208. doi: 10.1038/s41583-021-00431-1. Epub 2021 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验