Suppr超能文献

2014 年 12 月至 2021 年 6 月海地白喉流行病学:空间建模分析。

The epidemiology of diphtheria in Haiti, December 2014-June 2021: A spatial modeling analysis.

机构信息

Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom.

RTI International, Washington, District of Columbia, United States of America.

出版信息

PLoS One. 2022 Aug 22;17(8):e0273398. doi: 10.1371/journal.pone.0273398. eCollection 2022.

Abstract

BACKGROUND

Haiti has been experiencing a resurgence of diphtheria since December 2014. Little is known about the factors contributing to the spread and persistence of the disease in the country. Geographic information systems (GIS) and spatial analysis were used to characterize the epidemiology of diphtheria in Haiti between December 2014 and June 2021.

METHODS

Data for the study were collected from official and open-source databases. Choropleth maps were developed to understand spatial trends of diphtheria incidence in Haiti at the commune level, the third administrative division of the country. Spatial autocorrelation was assessed using the global Moran's I. Local indicators of spatial association (LISA) were employed to detect areas with spatial dependence. Ordinary least squares (OLS) and geographically weighted regression (GWR) models were built to identify factors associated with diphtheria incidence. The performance and fit of the models were compared using the adjusted r-squared (R2) and the corrected Akaike information criterion (AICc).

RESULTS

From December 2014 to June 2021, the average annual incidence of confirmed diphtheria was 0.39 cases per 100,000 (range of annual incidence = 0.04-0.74 per 100,000). During the study period, diphtheria incidence presented weak but significant spatial autocorrelation (I = 0.18, p<0.001). Although diphtheria cases occurred throughout Haiti, nine communes were classified as disease hotspots. In the regression analyses, diphtheria incidence was positively associated with health facility density (number of facilities per 100,000 population) and degree of urbanization (proportion of urban population). Incidence was negatively associated with female literacy. The GWR model considerably improved model performance and fit compared to the OLS model, as indicated by the higher adjusted R2 value (0.28 v 0.15) and lower AICc score (261.97 v 267.13).

CONCLUSION

This study demonstrates that GIS and spatial analysis can support the investigation of epidemiological patterns. Furthermore, it shows that diphtheria incidence exhibited spatial variability in Haiti. The disease hotspots and potential risk factors identified in this analysis could provide a basis for future public health interventions aimed at preventing and controlling diphtheria transmission.

摘要

背景

自 2014 年 12 月以来,海地的白喉疫情再度爆发。目前人们对白喉在该国传播和持续存在的原因知之甚少。地理信息系统(GIS)和空间分析被用于描述 2014 年 12 月至 2021 年 6 月期间海地白喉的流行病学特征。

方法

本研究的数据来自官方和公开来源的数据库。通过绘制海地社区一级(该国的第三行政分区)白喉发病率的面域图,了解白喉发病率的空间趋势。采用全局 Moran's I 评估空间自相关。利用局部空间关联指标(LISA)检测具有空间依赖性的区域。采用普通最小二乘法(OLS)和地理加权回归(GWR)模型,确定与白喉发病率相关的因素。通过调整后的 r 平方(R2)和校正的 Akaike 信息准则(AICc)比较模型的性能和拟合度。

结果

2014 年 12 月至 2021 年期间,确诊白喉的年平均发病率为每 10 万人 0.39 例(年发病率范围为每 10 万人 0.04-0.74 例)。研究期间,白喉发病率呈现出微弱但显著的空间自相关(I = 0.18,p<0.001)。尽管白喉病例遍布海地各地,但有 9 个社区被归类为疾病热点地区。在回归分析中,白喉发病率与医疗机构密度(每 10 万人拥有的设施数量)和城市化程度(城市人口比例)呈正相关,与女性识字率呈负相关。与 OLS 模型相比,GWR 模型大大提高了模型性能和拟合度,表现为调整后的 R2 值更高(0.28 比 0.15),AICc 评分更低(261.97 比 267.13)。

结论

本研究表明,GIS 和空间分析可以支持对流行病学模式的研究。此外,研究结果表明,海地的白喉发病率存在空间变异性。本研究分析确定的疾病热点地区和潜在风险因素可为未来旨在预防和控制白喉传播的公共卫生干预措施提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/426b/9394811/e2de33258b08/pone.0273398.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验