Suppr超能文献

将蛋白质聚乙二醇化从一门艺术转变为数据科学。

Moving Protein PEGylation from an Art to a Data Science.

机构信息

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Amgen Inc., Thousand Oaks, California 91320, United States.

出版信息

Bioconjug Chem. 2022 Sep 21;33(9):1643-1653. doi: 10.1021/acs.bioconjchem.2c00262. Epub 2022 Aug 22.

Abstract

PEGylation is a well-established and clinically proven half-life extension strategy for protein delivery. Protein modification with amine-reactive poly(ethylene glycol) (PEG) generates heterogeneous and complex bioconjugate mixtures, often composed of several PEG positional isomers with varied therapeutic efficacy. Laborious and costly experiments for reaction optimization and purification are needed to generate a therapeutically useful PEG conjugate. Kinetic models which accurately predict the outcome of so-called "random" PEGylation reactions provide an opportunity to bypass extensive wet lab experimentation and streamline the bioconjugation process. In this study, we propose a protein tertiary structure-dependent reactivity model that describes the rate of protein-amine PEGylation and introduces "PEG chain coverage" as a tangible metric to assess the shielding effect of PEG chains. This structure-dependent reactivity model was implemented into three models (linear, structure-based, and machine-learned) to gain insight into how protein-specific molecular descriptors (exposed surface areas, p, and surface charge) impacted amine reactivity at each site. Linear and machine-learned models demonstrated over 75% prediction accuracy with butylcholinesterase. Model validation with Somavert, PEGASYS, and phenylalanine ammonia lyase showed good correlation between predicted and experimentally determined degrees of modification. Our structure-dependent reactivity model was also able to simulate PEGylation progress curves and estimate "PEGmer" distribution with accurate predictions across different proteins, PEG linker chemistry, and PEG molecular weights. Moreover, in-depth analysis of these simulated reaction curves highlighted possible PEG conformational transitions (from to ) on the surface of lysozyme, as a function of PEG molecular weight.

摘要

聚乙二醇化是一种成熟且经过临床验证的蛋白质递药半衰期延长策略。通过与反应性胺的聚乙二醇(PEG)修饰生成具有不均一和复杂的生物缀合物混合物,通常由几种具有不同治疗效果的 PEG 位置异构体组成。需要进行费力且昂贵的实验来优化反应和进行纯化,以生成具有治疗用途的 PEG 缀合物。能够准确预测所谓“随机”PEG 化反应结果的动力学模型为避免广泛的湿实验室实验并简化生物缀合过程提供了机会。在这项研究中,我们提出了一种依赖于蛋白质三级结构的反应性模型,该模型描述了蛋白质-胺 PEG 化的速率,并引入了“PEG 链覆盖率”作为评估 PEG 链屏蔽效应的实际指标。这种依赖于结构的反应性模型被纳入三种模型(线性、基于结构和基于机器学习)中,以深入了解蛋白质特定的分子描述符(暴露表面积、p 和表面电荷)如何影响每个位点的胺反应性。线性和基于机器学习的模型对丁酰胆碱酯酶的预测准确率超过 75%。用 Somavert、PEGASYS 和苯丙氨酸解氨酶进行模型验证表明,预测的和实验确定的修饰程度之间具有良好的相关性。我们的依赖结构的反应性模型还能够模拟 PEG 化进展曲线,并根据不同的蛋白质、PEG 连接化学和 PEG 分子量准确估计“PEGmer”分布。此外,对这些模拟反应曲线的深入分析突出了溶菌酶表面上可能发生的 PEG 构象转变(从 到 ),这是 PEG 分子量的函数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cc4/9501918/63a362387272/bc2c00262_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验