Suppr超能文献

聚乙二醇化蛋白质的纯化。

Purification of pegylated proteins.

作者信息

Fee Conan J, Van Alstine James M

机构信息

Biomolecular Interaction Centre and Department of Chemical and Process Engineering, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand.

出版信息

Methods Biochem Anal. 2011;54:339-62. doi: 10.1002/9780470939932.ch14.

Abstract

Separation of PEGylated proteins is challenging because PEG itself is a relatively inert, neutral, hydrophilic polymer and the starting point for PEGylation is a pure protein. Thus, other than molecular weight and size, differences in the physicochemical properties typically used to fractionate proteins may be slight between different PEGylated forms of a protein. The usual properties of electrostatic charge and molecular weight (size) form the basis of the most commonly used separation techniques, particularly IEC, SEC, and ultrafiltration. The main effect of PEGylation on ion-exchange separations is to shield the electrostatic charges on the protein surface and to reduce the strength of interactions with higher PEG chain molecular weight or higher PEGylation extent. Thus, ion exchange can be used very effectively to separate on the basis of PEGylation extent for low extents, but as N increases, the effectiveness of separation rapidly diminishes. Separation of positional isomers is possible by RPC or ion exchange at analytical scale, but it is problematic at the preparative scale due to the small size of the differences in electrostatic interactions between isomers. PEGylation imparts significant changes in molecular weight with each chain added to a protein and there are corresponding increases in molecular size, so SEC and ultrafiltration (and dialysis) are effective methods for separating native and PEGylated proteins. However, the relative size difference between variants differing in PEGylation extent by one adduct reduces with N, so that efficient SEC separation between PEGylated species differing by one PEG chain is not likely to be economic at the preparative scale for N > 3. This holds true even for PEG proteins produced with large PEG polymers (Mr > or =20 kDa). For small PEG polymers (Mr = 2 kDa), only native and PEGylated species can be separated effectively. At the analytical scale, with proper calibration, SEC can provide valuable information on PEGylation extent. Membranes can be used to reduce the concentration of smaller molecular weight species by dialysis but cannot fully remove them, and an operational trade-off between purity and yield is required. Gel electrophoresis can confirm PEGylation reactions have proceeded and indicate the relative purity of products, but its use to confirm PEGylation extent requires further research. The main drawback of separations based solely upon molecular size is that they cannot differentiate between positional isomers. Capillary electrophoresis is an exception, quantitatively combining any or all of size, shape, conformational freedom, and small differences in protein surface properties to separate by both PEGylation extent and positional isomerism. Relative hydrophobicity is a useful property for analytical separations using RPC, but HIC, which is used routinely for production-scale purification of proteins, does not appear to be particularly useful for separation of PEGylated species.

摘要

聚乙二醇化蛋白质的分离具有挑战性,因为聚乙二醇本身是一种相对惰性、中性的亲水性聚合物,且聚乙二醇化的起始原料是纯蛋白质。因此,除了分子量和大小外,用于分离蛋白质的物理化学性质差异在蛋白质的不同聚乙二醇化形式之间可能很小。静电荷和分子量(大小)的通常性质构成了最常用分离技术的基础,特别是离子交换色谱(IEC)、尺寸排阻色谱(SEC)和超滤。聚乙二醇化对离子交换分离的主要影响是屏蔽蛋白质表面的静电荷,并降低与较高聚乙二醇链分子量或较高聚乙二醇化程度的相互作用强度。因此,离子交换可非常有效地基于低程度的聚乙二醇化程度进行分离,但随着N的增加,分离效果迅速降低。在分析规模下,通过反相色谱(RPC)或离子交换可以分离位置异构体,但由于异构体之间静电相互作用差异较小,在制备规模下存在问题。聚乙二醇化会随着每条链添加到蛋白质上而使分子量发生显著变化,并且分子大小也会相应增加,因此尺寸排阻色谱和超滤(以及透析)是分离天然蛋白质和聚乙二醇化蛋白质的有效方法。然而,聚乙二醇化程度相差一个加合物的变体之间的相对大小差异会随着N的增加而减小,因此对于N>3的情况,在制备规模下通过尺寸排阻色谱有效分离相差一个聚乙二醇链的聚乙二醇化物种可能不经济。即使对于用大聚乙二醇聚合物(Mr≥20 kDa)生产的聚乙二醇化蛋白质也是如此。对于小聚乙二醇聚合物(Mr = 2 kDa),只能有效分离天然和聚乙二醇化物种。在分析规模下,通过适当校准,尺寸排阻色谱可以提供有关聚乙二醇化程度的有价值信息。膜可用于通过透析降低较小分子量物种的浓度,但不能完全去除它们,并且需要在纯度和产率之间进行操作权衡。凝胶电泳可以确认聚乙二醇化反应已经进行,并表明产物的相对纯度,但其用于确认聚乙二醇化程度需要进一步研究。仅基于分子大小的分离的主要缺点是它们无法区分位置异构体。毛细管电泳是一个例外,它定量地结合了大小、形状、构象自由度和蛋白质表面性质的微小差异中的任何一个或全部,以通过聚乙二醇化程度和位置异构进行分离。相对疏水性是使用反相色谱进行分析分离的有用性质,但常用于蛋白质生产规模纯化的疏水相互作用色谱(HIC)对于聚乙二醇化物种的分离似乎并不是特别有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验