Suppr超能文献

AAP-MIT:用于多句子视频描述的注意多孔金字塔网络和记忆整合转换器。

AAP-MIT: Attentive Atrous Pyramid Network and Memory Incorporated Transformer for Multisentence Video Description.

出版信息

IEEE Trans Image Process. 2022;31:5559-5569. doi: 10.1109/TIP.2022.3195643. Epub 2022 Aug 26.

Abstract

Generating multi-sentence descriptions for video is considered to be the most complex task in computer vision and natural language understanding due to the intricate nature of video-text data. With the recent advances in deep learning approaches, the multi-sentence video description has achieved an impressive progress. However, learning rich temporal context representation of visual sequences and modelling long-term dependencies of natural language descriptions is still a challenging problem. Towards this goal, we propose an Attentive Atrous Pyramid network and Memory Incorporated Transformer (AAP-MIT) for multi-sentence video description. The proposed AAP-MIT incorporates the effective representation of visual scene by distilling the most informative and discriminative spatio-temporal features of video data at multiple granularities and further generates the highly summarized descriptions. Profoundly, we construct AAP-MIT with three major components: i) a temporal pyramid network, which builds the temporal feature hierarchy at multiple scales by convolving the local features at temporal space, ii) a temporal correlation attention to learn the relations among various temporal video segments, and iii) the memory incorporated transformer, which augments the new memory block in language transformer to generate highly descriptive natural language sentences. Finally, the extensive experiments on ActivityNet Captions and YouCookII datasets demonstrate the substantial superiority of AAP-MIT over the existing approaches.

摘要

生成多句视频描述被认为是计算机视觉和自然语言理解中最复杂的任务,因为视频-文本数据的复杂性。随着深度学习方法的最新进展,多句视频描述已经取得了令人瞩目的进展。然而,学习丰富的视觉序列的时间上下文表示和建模自然语言描述的长期依赖性仍然是一个具有挑战性的问题。针对这一目标,我们提出了一种用于多句视频描述的注意多孔金字塔网络和记忆集成 Transformer(AAP-MIT)。所提出的 AAP-MIT 通过在多个粒度上提取视频数据最具信息量和判别力的时空特征,有效地表示视觉场景,并进一步生成高度概括的描述。深刻地说,我们用三个主要组件构建了 AAP-MIT:i)一个时间金字塔网络,它通过在时间空间上卷积局部特征来构建多个尺度的时间特征层次结构,ii)一个时间相关注意,用于学习各种时间视频片段之间的关系,以及 iii)记忆集成 Transformer,它在语言 Transformer 中增加新的记忆块,以生成高度描述性的自然语言句子。最后,在 ActivityNet Captions 和 YouCookII 数据集上的广泛实验证明了 AAP-MIT 相对于现有方法的实质性优势。

相似文献

2
Learning Hierarchical Modular Networks for Video Captioning.用于视频字幕的分层模块化网络学习
IEEE Trans Pattern Anal Mach Intell. 2024 Feb;46(2):1049-1064. doi: 10.1109/TPAMI.2023.3327677. Epub 2024 Jan 9.
5
Temporal-based Swin Transformer network for workflow recognition of surgical video.用于手术视频工作流识别的基于时间的Swin Transformer网络
Int J Comput Assist Radiol Surg. 2023 Jan;18(1):139-147. doi: 10.1007/s11548-022-02785-y. Epub 2022 Nov 4.
6
8
P2T: Pyramid Pooling Transformer for Scene Understanding.P2T:用于场景理解的金字塔池化变换器
IEEE Trans Pattern Anal Mach Intell. 2023 Nov;45(11):12760-12771. doi: 10.1109/TPAMI.2022.3202765. Epub 2023 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验