Suppr超能文献

心肌梗死的心电图生成模型。

An ECG generative model of myocardial infarction.

机构信息

Department of Automation, Tsinghua University, Beijing 100084, China.

School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China.

出版信息

Comput Methods Programs Biomed. 2022 Oct;225:107062. doi: 10.1016/j.cmpb.2022.107062. Epub 2022 Aug 12.

Abstract

Background and Objective Computer-aided diagnosis (CAD) of Myocardial Infarction (MI) using machine learning depends on a large amount of clinical Electrocardiogram (ECG) data. Existing infarct ECG databases face the problem of class imbalance. Data augmentation using generative simulation models is a new approach to effectively address this problem. Methods A multiscale ECG generative model was established for ECG data augmentation. In the cellular layer, an ischemic Action Potential (AP) model was established to generate APs in cardiomyocytes with different transmural regions of infraction or different ischemic durations. In the tissue layer, a probability-driven cellular automata excitation propagation model was established to simulate the propagation speed and direction of excitation. An infarct tissue model and a coronary artery model were established to describe the spatiotemporal diversity of MI. A ventricle model, a human torso model, and a computational model of surface ECG based on field source theory were established in the heart-torso layer. Results The model generated pathological 12-lead ECGs of MI with different topography and different extent. When simulating different ventricular wall infarction, the lesions appear in the same leads as the clinical 12-lead ECG. The ST-segment decreases and the T-wave amplitude decreases, similar to the clinical ECG features when simulating subendocardial ischemia. The average fidelity of the 12-lead ECG the model generated is 95.6%, according to the designed DTW-GRA distance algorithm. Conclusions The generative model considers the electrophysiological properties of the natural heart, the pathology of myocardial infarction, and the diversity of clinical ECGs. The model can provide many reliable samples for machine learning of MI.

摘要

背景与目的

使用机器学习对心肌梗死(MI)进行计算机辅助诊断(CAD)依赖于大量的临床心电图(ECG)数据。现有的梗死 ECG 数据库面临着类别不平衡的问题。使用生成式模拟模型进行数据扩充是有效解决这一问题的新方法。方法:建立了一种多尺度 ECG 生成模型,用于 ECG 数据扩充。在细胞层,建立了一个缺血动作电位(AP)模型,用于生成不同透壁区域或不同缺血持续时间的心肌细胞中的 AP。在组织层,建立了一个概率驱动的细胞自动机兴奋传播模型,用于模拟兴奋的传播速度和方向。建立了梗死组织模型和冠状动脉模型,以描述 MI 的时空多样性。在心-胸层,建立了心室模型、人体躯干模型和基于场源理论的体表 ECG 计算模型。结果:该模型生成了具有不同拓扑和不同程度的 MI 病理性 12 导联 ECG。在模拟不同心室壁梗死时,病变出现在与临床 12 导联 ECG 相同的导联上。ST 段下降,T 波幅度下降,与模拟心内膜下缺血时的临床 ECG 特征相似。根据设计的 DTW-GRA 距离算法,模型生成的 12 导联 ECG 的平均保真度为 95.6%。结论:该生成模型考虑了自然心脏的电生理特性、心肌梗死的病理学和临床 ECG 的多样性。该模型可以为 MI 的机器学习提供许多可靠的样本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验