Suppr超能文献

基于注意力的生成对抗网络在医学成像中的应用:叙事性综述。

Attention-based generative adversarial network in medical imaging: A narrative review.

机构信息

School of Engineering Medicine, Beihang University, Beijing, 100191, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.

School of Engineering Medicine, Beihang University, Beijing, 100191, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing, 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China.

出版信息

Comput Biol Med. 2022 Oct;149:105948. doi: 10.1016/j.compbiomed.2022.105948. Epub 2022 Aug 16.

Abstract

As a popular probabilistic generative model, generative adversarial network (GAN) has been successfully used not only in natural image processing, but also in medical image analysis and computer-aided diagnosis. Despite the various advantages, the applications of GAN in medical image analysis face new challenges. The introduction of attention mechanisms, which resemble the human visual system that focuses on the task-related local image area for certain information extraction, has drawn increasing interest. Recently proposed transformer-based architectures that leverage self-attention mechanism encode long-range dependencies and learn representations that are highly expressive. This motivates us to summarize the applications of using transformer-based GAN for medical image analysis. We reviewed recent advances in techniques combining various attention modules with different adversarial training schemes, and their applications in medical segmentation, synthesis and detection. Several recent studies have shown that attention modules can be effectively incorporated into a GAN model in detecting lesion areas and extracting diagnosis-related feature information precisely, thus providing a useful tool for medical image processing and diagnosis. This review indicates that research on the medical imaging analysis of GAN and attention mechanisms is still at an early stage despite the great potential. We highlight the attention-based generative adversarial network is an efficient and promising computational model advancing future research and applications in medical image analysis.

摘要

作为一种流行的概率生成模型,生成对抗网络(GAN)不仅成功应用于自然图像处理,也应用于医学图像分析和计算机辅助诊断。尽管 GAN 具有多种优势,但在医学图像分析中的应用仍面临新的挑战。引入注意力机制(类似于人类视觉系统,专注于与任务相关的局部图像区域以提取特定信息)引起了越来越多的关注。最近提出的基于转换器的架构利用自注意力机制来编码长距离依赖关系,并学习具有高度表现力的表示。这促使我们总结了基于转换器的 GAN 在医学图像分析中的应用。我们回顾了将各种注意力模块与不同对抗训练方案相结合的技术的最新进展,以及它们在医学分割、合成和检测中的应用。一些最近的研究表明,注意力模块可以有效地融入 GAN 模型中,从而精确地检测病变区域和提取与诊断相关的特征信息,为医学图像处理和诊断提供了有用的工具。这篇综述表明,尽管 GAN 和注意力机制的医学成像分析具有很大的潜力,但研究仍处于早期阶段。我们强调基于注意力的生成对抗网络是一种高效且有前途的计算模型,可推动医学图像分析领域的未来研究和应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验