Suppr超能文献

生成对抗网络及其在生物医学信息学中的应用。

Generative Adversarial Networks and Its Applications in Biomedical Informatics.

机构信息

West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.

Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States.

出版信息

Front Public Health. 2020 May 12;8:164. doi: 10.3389/fpubh.2020.00164. eCollection 2020.

Abstract

The basic Generative Adversarial Networks (GAN) model is composed of the input vector, generator, and discriminator. Among them, the generator and discriminator are implicit function expressions, usually implemented by deep neural networks. GAN can learn the generative model of any data distribution through adversarial methods with excellent performance. It has been widely applied to different areas since it was proposed in 2014. In this review, we introduced the origin, specific working principle, and development history of GAN, various applications of GAN in digital image processing, Cycle-GAN, and its application in medical imaging analysis, as well as the latest applications of GAN in medical informatics and bioinformatics.

摘要

基础生成对抗网络(GAN)模型由输入向量、生成器和判别器组成。其中,生成器和判别器是隐式函数表达式,通常通过深度神经网络实现。GAN 通过对抗方法学习任何数据分布的生成模型,具有出色的性能。自 2014 年提出以来,它已广泛应用于不同领域。在本文中,我们介绍了 GAN 的起源、具体工作原理和发展历史,以及 GAN 在数字图像处理、Cycle-GAN 及其在医学图像分析中的应用,以及 GAN 在医学信息学和生物信息学中的最新应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9975/7235323/094e406b9cd0/fpubh-08-00164-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验