Vietnam National University, Ho Chi Minh, Vietnam; Chemical Engineering Department, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam.
Vietnam National University, Ho Chi Minh, Vietnam; Chemical Engineering Department, School of Biotechnology, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam.
Biochim Biophys Acta Biomembr. 2022 Nov 1;1864(11):184027. doi: 10.1016/j.bbamem.2022.184027. Epub 2022 Aug 19.
Lipid rafts, in biological membranes, are cholesterol-rich nanodomains that regulate many protein activities and cellular processes. Understanding the formation of the lipid-raft nanodomains helps us elucidate many complex interactions in the cell. In this study, the formation of lipid-raft nanodomains in a ternary palmitoyl-oleoyl-phosphatidylcholine/stearoyl-sphingomyelin/cholesterol (POPC/DPSM/Chol) lipid mixture, the most realistic surrogate model for biological membranes, has been successfully observed for the first time in-silico using microsecond timescale molecular dynamics simulations. The model reveals the formation of cholesterol-induced nanodomains with raft-like characteristics and their underlying mechanism: the cholesterol molecules segregate themselves into cholesterol nanodomains and then enrich the cholesterol-rich domain with sphingomyelin molecules to form a lipid raft thanks to the weak bonding of cholesterol with sphingomyelin. Besides, it is found that the increase in cholesterol concentration enhances the biophysical properties (e.g., bilayer thickness, area per lipid headgroup, and order parameter) of the lipid raft nanodomains. Such findings suggest that the POPC/DPSM/Chol bilayer is a suitable model to fundamentally extend the nanodomain evolution to investigate their lifetime and kinetics as well as to study protein-lipid interaction, protein-protein interaction, and selection of therapeutic molecules in the presence of lipid rafts.
脂质筏是生物膜中的胆固醇富集纳米区,可调节许多蛋白质的活性和细胞过程。了解脂质筏纳米区的形成有助于我们阐明细胞中的许多复杂相互作用。在这项研究中,首次使用微秒时间尺度的分子动力学模拟成功地在计算机上观察到了最接近生物膜的三元十六烷酰基-油酰基-磷脂酰胆碱/硬脂酰基-神经鞘氨醇/胆固醇(POPC/DPSM/Chol)脂质混合物中脂质筏纳米区的形成。该模型揭示了胆固醇诱导的纳米区的形成及其潜在机制:胆固醇分子自身分离成胆固醇纳米区,然后通过胆固醇与神经鞘氨醇的弱键合,使富含胆固醇的区域富集神经鞘氨醇分子,从而形成脂质筏。此外,还发现胆固醇浓度的增加会增强脂质筏纳米区的生物物理性质(例如双层厚度、每个脂质头部基团的面积和序参数)。这些发现表明,POPC/DPSM/Chol 双层是一个合适的模型,可以从根本上扩展纳米区的演化,以研究它们的寿命和动力学,以及研究蛋白质-脂质相互作用、蛋白质-蛋白质相互作用和治疗分子在脂质筏存在下的选择。