Omair Zunaid, Assawaworrarit Sid, Fan Lingling, Jin Weiliang, Fan Shanhui
Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA.
iScience. 2022 Aug 4;25(8):104858. doi: 10.1016/j.isci.2022.104858. eCollection 2022 Aug 19.
The outer space (3 K) represents an important thermodynamic resource. It has been known for decades that at nighttime, a sky-facing thermal emitter radiating strongly within the atmospheric transparency window (8-13 μm), can reach below the ambient temperature. In recent studies, thermoelectric generators were used to harness this temperature difference between the emitter and ambient to generate electricity. However, the demonstrated power density has been limited by parasitic thermal losses. Here we show that these parasitic losses can be reduced through thermal engineering. We present a simple model showing the optimum power density can be approached by controlling the relation between the emitter area and the thermal resistance of the thermoelectric generator. We show that the stacking of multiple thermoelectric generators is an effective way to approach this optimum. We experimentally demonstrate a generated electric power density >100 mW/m, representing > 2-fold improvement over the previous results for nighttime radiative cooling.
外层空间(3K)是一种重要的热力学资源。几十年来人们已经知道,在夜间,面向天空的热发射器在大气透明窗口(8 - 13μm)内强烈辐射,其温度可以降至环境温度以下。在最近的研究中,热电发电机被用于利用发射器与环境之间的这种温差来发电。然而,已证明的功率密度受到寄生热损失的限制。在这里我们表明,这些寄生损失可以通过热工程来降低。我们提出了一个简单模型,表明通过控制发射器面积与热电发电机热阻之间的关系可以接近最佳功率密度。我们表明,堆叠多个热电发电机是接近这一最佳状态的有效方法。我们通过实验证明产生的电功率密度>100 mW/m²,比之前夜间辐射冷却的结果提高了>2倍。