Suppr超能文献

在阳光直射下,被动式辐射冷却可将环境空气温度降低。

Passive radiative cooling below ambient air temperature under direct sunlight.

机构信息

Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA.

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.

出版信息

Nature. 2014 Nov 27;515(7528):540-4. doi: 10.1038/nature13883.

Abstract

Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

摘要

冷却在全球范围内是能源的重要用途,也是电力需求峰值的主要驱动因素。例如,空调占美国建筑使用的一次能源的近 15%。因此,无需电力输入的被动冷却策略可能会对全球能源消耗产生重大影响。要实现冷却,就需要能够达到并保持低于环境空气温度的温度。在夜间,已经通过一种称为辐射冷却的技术实现了低于环境空气温度的被动冷却,其中通过大气中的透明度窗口将暴露在天空下的设备用于将热量辐射到外层空间,该透明度窗口在 8 到 13 微米之间。然而,最大的冷却需求出现在白天。在白天,在阳光直射下,要使表面温度低于环境温度的辐射冷却还没有实现,因为白天可以进入天空,导致辐射冷却器被太阳加热。在这里,我们通过实验证明了在阳光直射下,辐射冷却可以使温度接近环境温度低 5 摄氏度。我们使用热光子方法,引入了一种集成的光子太阳能反射器和热发射器,由七层 HfO2 和 SiO2 组成,它可以反射 97%的入射阳光,同时在大气透明度窗口中强烈且选择性地发射。当暴露在屋顶上每平方米超过 850 瓦的直接阳光下时,光子辐射冷却器可以将温度冷却到环境温度低 4.9 摄氏度,在环境空气温度下的冷却功率为 40.1 瓦/平方米。这些结果表明,经过精心设计的光子方法可以从根本上为能效提供新的技术可能性。此外,即使在一天中最热的时间,宇宙的寒冷黑暗也可以作为一种可再生的热力学资源来利用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验