Dai Pengpeng, Kong Xiangbang, Yang Huiya, Kuang Silan, Zeng Jing, Zhao Jinbao
State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China.
ACS Appl Mater Interfaces. 2022 Sep 7;14(35):39927-39938. doi: 10.1021/acsami.2c08724. Epub 2022 Aug 24.
Combining the Ni-rich layered cathode (Ni ≥ 80%) with high operating voltage is considered as a feasible solution to achieve high-energy lithium-ion batteries (LIBs). However, the working voltage is limited in practical applications due to the poor interface stability in traditional carbonate electrolytes. Herein, LiBF and LiNO are added as film-forming additives and 1.0 M LiPF in SL/FEC/EMC with 0.5 wt % LiBF-LiNO (HVE) is obtained. A uniform and inorganic-rich cathode electrolyte interphase (CEI) as well as a dense and LiN-LiF-rich solid electrolyte interphase (SEI) could be in situ generated on LiNiCoMnO (NCM811) and graphite (Gr) electrode in HVE, respectively. The robust interface film with electronic insulation and ionic conductivity effectively stabilizes the NCM811/Gr-electrolyte interfaces and improves the Li diffusion kinetics, enabling the high-load NCM811-Gr to maintain 85.2% capacity (∼180 mA h g) after 300 cycles under 4.4 V. Besides, the 4.2 V NCM811-Gr retains 90.4% of the initial capacity after 200 cycles at 2 C (∼6 mA h cm). Compared with the traditional carbonate electrolyte (LB301), HVE has obvious advantages in terms of high-voltage and fast dynamics performance. Especially, good thermal stability and economy make HVE a promising electrolyte for commercial high-energy LIBs.
将具有高工作电压的富镍层状正极(镍含量≥80%)相结合被认为是实现高能量锂离子电池(LIBs)的一种可行解决方案。然而,由于传统碳酸盐电解质中界面稳定性较差,其工作电压在实际应用中受到限制。在此,添加LiBF和LiNO作为成膜添加剂,得到了在SL/FEC/EMC中含有0.5 wt% LiBF-LiNO的1.0 M LiPF(HVE)。在HVE中,分别可以在LiNiCoMnO(NCM811)和石墨(Gr)电极上原位生成均匀且富含无机成分的正极电解质界面(CEI)以及致密且富含LiN-LiF的固体电解质界面(SEI)。具有电子绝缘性和离子导电性的坚固界面膜有效地稳定了NCM811/Gr-电解质界面,并改善了锂扩散动力学,使得高负载的NCM811-Gr在4.4 V下循环300次后仍能保持85.2%的容量(约180 mA h g)。此外,4.2 V的NCM811-Gr在2 C(约6 mA h cm)下循环200次后仍保留初始容量的90.4%。与传统碳酸盐电解质(LB301)相比,HVE在高电压和快速动力学性能方面具有明显优势。特别是,良好的热稳定性和经济性使HVE成为商业高能量LIBs的一种有前景的电解质。