Suppr超能文献

基于深度置信规则且具有可解释性的光伏发电功率预测方法

Deep belief rule based photovoltaic power forecasting method with interpretability.

作者信息

Han Peng, He Wei, Cao You, Li YingMei, Zhang YunYi

机构信息

Harbin Normal University, Harbin, 150025, China.

Rocket Force University of Engineering, Xi'an, 710025, China.

出版信息

Sci Rep. 2022 Aug 24;12(1):14467. doi: 10.1038/s41598-022-18820-6.

Abstract

Accurate prediction of photovoltaic (PV) output power is of great significance for reasonable scheduling and development management of power grids. In PV power generation prediction system, there are two problems: the uncertainty of PV power generation and the inexplicability of the prediction result. The belief rule base (BRB) is a rule-based modeling method and can deal with uncertain information. Moreover, the modeling process of BRB has a certain degree of interpretability. However, rule explosion and the inexplicability of the optimized model limit the modeling ability of BRB in complex systems. Thus, a PV output power prediction model is proposed based on a deep belief rule base with interpretability (DBRB-I). In the DBRB-I model, the deep BRB structure is constructed to solve the rule explosion problem, and inefficient rules are simplified by a sensitivity analysis of the rules, which reduces the complexity of the model. Moreover, to ensure that the interpretability of the model is not destroyed, a new optimization method based on the projection covariance matrix adaptation evolution strategy (P-CMA-ES) algorithm is designed. Finally, a case study of the prediction of PV output power is conducted to illustrate the effectiveness of the proposed method.

摘要

准确预测光伏(PV)输出功率对于电网的合理调度和发展管理具有重要意义。在光伏发电预测系统中,存在两个问题:光伏发电的不确定性和预测结果的不可解释性。置信规则库(BRB)是一种基于规则的建模方法,能够处理不确定信息。此外,BRB的建模过程具有一定程度的可解释性。然而,规则爆炸和优化模型的不可解释性限制了BRB在复杂系统中的建模能力。因此,提出了一种基于具有可解释性的深度置信规则库(DBRB-I)的光伏输出功率预测模型。在DBRB-I模型中,构建深度BRB结构以解决规则爆炸问题,并通过对规则的敏感性分析简化无效规则,从而降低模型的复杂性。此外,为确保不破坏模型的可解释性,设计了一种基于投影协方差矩阵自适应进化策略(P-CMA-ES)算法的新优化方法。最后,进行了光伏输出功率预测的案例研究,以说明所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/611f/9402627/b3e6994d0e54/41598_2022_18820_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验