Suppr超能文献

作为预测小细胞肺癌患者预后和化疗反应的生物标志物的共刺激分子表达谱。

Costimulatory molecule expression profile as a biomarker to predict prognosis and chemotherapy response for patients with small cell lung cancer.

机构信息

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

出版信息

Cancer Immunol Immunother. 2023 Mar;72(3):617-631. doi: 10.1007/s00262-022-03280-8. Epub 2022 Aug 24.

Abstract

Owing to the paucity of specimens, progress in identifying prognostic and therapeutic biomarkers for small cell lung cancer (SCLC) has been stagnant for decades. Considering that the costimulatory molecules are essential elements in modulating immune responses and determining therapeutic response, we systematically revealed the expression landscape and identified a costimulatory molecule-based signature (CMS) to predict prognosis and chemotherapy response for SCLCs for the first time. We found T cell activation was restrained in SCLCs, and costimulatory molecules exhibited widespread abnormal genetic alterations and expression. Using a LASSO Cox regression model, the CMS was built with a training cohort of 77 cases, which successfully divided patients into high- or low-risk groups with significantly different prognosis and chemotherapy benefit (both P < 0.001). The CMS was well validated in an independent cohort containing 131 samples with qPCR data. ROC and C-index analysis confirmed the superior predictive performance of the CMS in comparison with other clinicopathological parameters from different cohorts. Importantly, the CMS was confirmed as a significantly independent prognosticator for clinical outcomes and chemotherapy response in SCLCs through multivariate Cox analysis. Further analysis revealed that low-risk patients were characteristic by an activated immune phenotype with distinct expression of immune checkpoints. In summary, we firstly uncovered the expression heterogeneity of costimulatory molecules in SCLC and successfully constructed a novel predictive CMS. The identified signature contributed to more accurate patient stratification and provided robust prognostic value in estimating survival and the clinical response to chemotherapy, allowing optimization of treatment and prognosis management for patients with SCLC.

摘要

由于标本稀少,数十年来,小细胞肺癌(SCLC)的预后和治疗生物标志物的鉴定进展一直停滞不前。鉴于共刺激分子是调节免疫反应和决定治疗反应的重要因素,我们首次系统地揭示了 SCLC 中表达谱,并确定了一个基于共刺激分子的特征(CMS),以预测 SCLC 的预后和化疗反应。我们发现 T 细胞激活在 SCLC 中受到抑制,共刺激分子表现出广泛的异常遗传改变和表达。使用 LASSO Cox 回归模型,我们在一个包含 77 例病例的训练队列中构建了 CMS,该模型成功地将患者分为高风险或低风险组,两组患者的预后和化疗获益存在显著差异(均 P<0.001)。CMS 在包含 131 个具有 qPCR 数据的独立队列中得到了很好的验证。ROC 和 C-index 分析证实,与来自不同队列的其他临床病理参数相比,CMS 在预测性能方面具有优越性。重要的是,通过多变量 Cox 分析,CMS 被确认为 SCLC 临床结果和化疗反应的显著独立预后因素。进一步的分析表明,低风险患者的免疫表型呈激活状态,免疫检查点的表达也存在明显差异。总之,我们首次揭示了 SCLC 中共刺激分子的表达异质性,并成功构建了一种新的预测性 CMS。该鉴定特征有助于更准确地对患者进行分层,并为估计生存和对化疗的临床反应提供了强大的预后价值,从而优化了 SCLC 患者的治疗和预后管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/764e/10992384/cd7bdb1d62a3/262_2022_3280_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验